-
WRI/Google DeepMind 글로벌 산림 감소 요인 2001~2022 v1.0
이 데이터 세트는 2001~2022년 전 세계에서 나무 덮개 감소의 주요 요인을 1km 해상도로 매핑합니다. World Resources Institute (WRI)와 Google DeepMind가 제작한 이 데이터는 수집된 일련의 샘플에 대해 학습된 글로벌 신경망 모델 (ResNet)을 사용하여 개발되었습니다. 농업 deforestation forest forest-biomass google landandcarbon -
WRI/Google DeepMind 글로벌 산림 감소의 원인 2001~2023 v1.1
이 데이터 세트는 2001~2023년 전 세계에서 나무 덮개 감소의 주요 요인을 1km 해상도로 매핑합니다. World Resources Institute (WRI)와 Google DeepMind가 제작한 이 데이터는 수집된 일련의 샘플에 대해 학습된 글로벌 신경망 모델 (ResNet)을 사용하여 개발되었습니다. 농업 deforestation forest forest-biomass google landandcarbon -
WRI/Google DeepMind 글로벌 산림 감소 요인 2001~2024 v1.2
이 데이터 세트는 2001~2024년 전 세계에서 나무 덮개 감소의 주요 요인을 1km 해상도로 매핑합니다. World Resources Institute (WRI)와 Google DeepMind가 제작한 이 데이터는 수집된 일련의 샘플에 대해 학습된 글로벌 신경망 모델 (ResNet)을 사용하여 개발되었습니다. 농업 deforestation forest forest-biomass google landandcarbon
Land & Carbon Lab
[null,null,[],[],[],null,["# Land & Carbon Lab\n\nLand and Carbon Lab, founded by World Resources Institute and the Bezos Earth Fund in 2021, develops breakthroughs in geospatial monitoring to help governments, businesses and communities power solutions for sustainable landscapes. Global Forest Watch, established in 2014 by a consortium of partners led by the World Resources Institute, is a forest monitoring initiative that provides open access to data about the current status of forests and recent forest change. \n[](https://landcarbonlab.org/) \n-\n\n |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### WRI/Google DeepMind Global Drivers of Forest Loss 2001-2022 v1.0](/earth-engine/datasets/catalog/projects_landandcarbon_assets_wri_gdm_drivers_forest_loss_1km_v1_2001_2022) |\n | This dataset maps the dominant driver of tree cover loss from 2001-2022 globally at 1 km resolution. Produced by the World Resources Institute (WRI) and Google DeepMind, the data were developed using a global neural network model (ResNet) trained on a set of samples collected ... |\n | [agriculture](/earth-engine/datasets/tags/agriculture) [deforestation](/earth-engine/datasets/tags/deforestation) [forest](/earth-engine/datasets/tags/forest) [forest-biomass](/earth-engine/datasets/tags/forest-biomass) [google](/earth-engine/datasets/tags/google) [landandcarbon](/earth-engine/datasets/tags/landandcarbon) |\n\n-\n\n |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### WRI/Google DeepMind Global Drivers of Forest Loss 2001-2023 v1.1](/earth-engine/datasets/catalog/projects_landandcarbon_assets_wri_gdm_drivers_forest_loss_1km_v1_1_2001_2023) |\n | This dataset maps the dominant driver of tree cover loss from 2001-2023 globally at 1 km resolution. Produced by the World Resources Institute (WRI) and Google DeepMind, the data were developed using a global neural network model (ResNet) trained on a set of samples collected ... |\n | [agriculture](/earth-engine/datasets/tags/agriculture) [deforestation](/earth-engine/datasets/tags/deforestation) [forest](/earth-engine/datasets/tags/forest) [forest-biomass](/earth-engine/datasets/tags/forest-biomass) [google](/earth-engine/datasets/tags/google) [landandcarbon](/earth-engine/datasets/tags/landandcarbon) |\n\n-\n\n |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### WRI/Google DeepMind Global Drivers of Forest Loss 2001-2024 v1.2](/earth-engine/datasets/catalog/projects_landandcarbon_assets_wri_gdm_drivers_forest_loss_1km_v1_2_2001_2024) |\n | This dataset maps the dominant driver of tree cover loss from 2001-2024 globally at 1 km resolution. Produced by the World Resources Institute (WRI) and Google DeepMind, the data were developed using a global neural network model (ResNet) trained on a set of samples collected ... |\n | [agriculture](/earth-engine/datasets/tags/agriculture) [deforestation](/earth-engine/datasets/tags/deforestation) [forest](/earth-engine/datasets/tags/forest) [forest-biomass](/earth-engine/datasets/tags/forest-biomass) [google](/earth-engine/datasets/tags/google) [landandcarbon](/earth-engine/datasets/tags/landandcarbon) |"]]