Join the newly launched
Discord community for real-time discussions, peer support, and direct interaction with the Meridian team!
Set custom ROI priors using past experiments
Stay organized with collections
Save and categorize content based on your preferences.
Meridian requires passing distributions for ROI calibration. Although setting
custom priors using results from previous experiments is a sound approach,
there are many nuances to consider before proceeding. For example:
The timing of the experiment in relation to the MMM time window:
If the experiment was conducted either before or after the MMM time window,
the results might not be directly applicable.
The duration of the experiment: An experiment of short duration might
not effectively capture the long-term effects of the marketing effectiveness.
The complexity of the experiment: If the experiment involved a mixture
of channels, the results might not provide clear insights into the performance
of individual channels.
Estimand differences: The estimands used in experiments can differ from
those used in the MMM. For example, the MMM counterfactual is zero spend,
whereas some experiments might have a different counterfactual, such as
reduced spend.
Population differences: The population targeted in the experiment might
not be the same as the population considered in the MMM.
We recommend setting the custom priors based on your belief in the
effectiveness of a channel. A prior belief can be informed by many things,
including experiments or other reliable analyses. Use the strength in that
prior belief to inform the standard deviation of the prior:
If you have a strong belief in the effectiveness of a channel,
you can apply an adjustment factor to the standard deviation of the prior to
reflect your confidence. For example, suppose you have conducted several
experiments for a particular channel and all the experiments yielded similar
ROI point estimates, or you have historical data from previous MMM analyses
that support the effectiveness of this channel. In this case, you could set a
smaller standard deviation for the prior so that the distribution won't vary
widely. This tighter distribution indicates your strong confidence in the
experimental results.
Conversely, the experiment might not necessarily translate to the MMM,
considering some of the nuances listed earlier. In this case, you might choose
to apply an adjustment factor to standard deviation of the prior distribution.
For example, you could set a larger standard deviation for the prior,
depending on your level of skepticism.
You should consider using the roi_calibration_period
argument in
ModelSpec
. For more information, see
Set the ROI calibration period.
When setting the prior, the LogNormal
distribution is a common
one to use. The following sample code can be used to transform experiment's
mean and standard error to the LogNormal
prior
distribution:
import numpy as np
def estimate_lognormal_dist(mean, std):
"""Reparameterization of lognormal distribution in terms of its mean and std."""
mu_log = np.log(mean) - 0.5 * np.log((std/mean)**2 + 1)
std_log = np.sqrt(np.log((std/mean)**2 + 1))
return [mu_log, std_log]
However, if the results from previous experiments are near zero, you should
consider whether your prior beliefs are accurately represented by a
non-negative distribution, such as the LogNormal
distribution. We
highly recommend plotting the prior distribution to confirm it matches
your prior intuitions before proceeding with the analysis. The following
sample code shows how to get reparameterized LogNormal
parameters, define the distribution, and draw samples from it.
import tensorflow as tf
import tensorflow_probability as tfp
# Get reparameterized LogNormal distribution parameters
mu_log, std_log = estimate_lognormal_dist(mean, std)
mu_log = tf.convert_to_tensor(mu_log, dtype=tf.float32)
std_log = tf.convert_to_tensor(std_log, dtype=tf.float32)
# Define the LogNormal distribution
lognormal_dist = tfp.distributions.LogNormal(mu_log, std_log)
# Draw 10,000 samples
lognormal_samples = lognormal_dist.sample(10000).numpy()
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-06-11 UTC.
[null,null,["Last updated 2025-06-11 UTC."],[[["\u003cp\u003eMeridian's ROI calibration can be enhanced by incorporating prior knowledge from past experiments, but factors like experiment timing, duration, complexity, estimand, and population differences need careful consideration for accurate application.\u003c/p\u003e\n"],["\u003cp\u003ePrior beliefs about channel effectiveness should guide the standard deviation of the prior distribution, with stronger beliefs corresponding to tighter distributions and vice-versa.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eroi_calibration_period\u003c/code\u003e argument in \u003ccode\u003eModelSpec\u003c/code\u003e offers further control over the calibration process.\u003c/p\u003e\n"],["\u003cp\u003eWhile the \u003ccode\u003eLogNormal\u003c/code\u003e distribution is commonly used for setting priors, its suitability should be evaluated when experimental results are near zero, potentially requiring alternative distributions to better reflect prior intuitions.\u003c/p\u003e\n"],["\u003cp\u003eVisualizing the prior distribution before analysis is crucial for ensuring it aligns with expectations and avoids misrepresentation of prior beliefs.\u003c/p\u003e\n"]]],["Meridian uses passing distributions for ROI calibration, informed by prior beliefs and experiments. Before using custom priors, consider: experiment timing, duration, complexity, estimand differences, and population differences. Adjust prior standard deviation based on confidence; strong confidence warrants a smaller standard deviation. Use the `roi_calibration_period` argument in `ModelSpec`. `LogNormal` distributions are common, and sample code transforms experimental mean and standard error to `LogNormal` parameters. For near-zero experimental results, verify that the `LogNormal` distribution aligns with prior beliefs.\n"],null,["# Set custom ROI priors using past experiments\n\nMeridian requires passing distributions for ROI calibration. Although setting\ncustom priors using results from previous experiments is a sound approach,\nthere are many nuances to consider before proceeding. For example:\n\n- **The timing of the experiment in relation to the MMM time window:**\n If the experiment was conducted either before or after the MMM time window,\n the results might not be directly applicable.\n\n- **The duration of the experiment:** An experiment of short duration might\n not effectively capture the long-term effects of the marketing effectiveness.\n\n- **The complexity of the experiment:** If the experiment involved a mixture\n of channels, the results might not provide clear insights into the performance\n of individual channels.\n\n- **Estimand differences:** The estimands used in experiments can differ from\n those used in the MMM. For example, the MMM counterfactual is zero spend,\n whereas some experiments might have a different counterfactual, such as\n reduced spend.\n\n- **Population differences:** The population targeted in the experiment might\n not be the same as the population considered in the MMM.\n\nWe recommend setting the custom priors based on your belief in the\neffectiveness of a channel. A prior belief can be informed by many things,\nincluding experiments or other reliable analyses. Use the strength in that\nprior belief to inform the standard deviation of the prior:\n\n- If you have a strong belief in the effectiveness of a channel,\n you can apply an adjustment factor to the standard deviation of the prior to\n reflect your confidence. For example, suppose you have conducted several\n experiments for a particular channel and all the experiments yielded similar\n ROI point estimates, or you have historical data from previous MMM analyses\n that support the effectiveness of this channel. In this case, you could set a\n smaller standard deviation for the prior so that the distribution won't vary\n widely. This tighter distribution indicates your strong confidence in the\n experimental results.\n\n- Conversely, the experiment might not necessarily translate to the MMM,\n considering some of the nuances listed earlier. In this case, you might choose\n to apply an adjustment factor to standard deviation of the prior distribution.\n For example, you could set a larger standard deviation for the prior,\n depending on your level of skepticism.\n\nYou should consider using the `roi_calibration_period` argument in\n`ModelSpec`. For more information, see\n[Set the ROI calibration period](/meridian/docs/user-guide/configure-model#set-roi-calibration-period).\n\nWhen setting the prior, the `LogNormal` distribution is a common\none to use. The following sample code can be used to transform experiment's\nmean and standard error to the `LogNormal` prior\ndistribution: \n\n import numpy as np\n\n def estimate_lognormal_dist(mean, std):\n \"\"\"Reparameterization of lognormal distribution in terms of its mean and std.\"\"\"\n mu_log = np.log(mean) - 0.5 * np.log((std/mean)**2 + 1)\n std_log = np.sqrt(np.log((std/mean)**2 + 1))\n return [mu_log, std_log]\n\nHowever, if the results from previous experiments are near zero, you should\nconsider whether your prior beliefs are accurately represented by a\nnon-negative distribution, such as the `LogNormal` distribution. We\nhighly recommend plotting the prior distribution to confirm it matches\nyour prior intuitions before proceeding with the analysis. The following\nsample code shows how to get reparameterized `LogNormal`\nparameters, define the distribution, and draw samples from it. \n\n import tensorflow as tf\n import tensorflow_probability as tfp\n\n # Get reparameterized LogNormal distribution parameters\n mu_log, std_log = estimate_lognormal_dist(mean, std)\n mu_log = tf.convert_to_tensor(mu_log, dtype=tf.float32)\n std_log = tf.convert_to_tensor(std_log, dtype=tf.float32)\n # Define the LogNormal distribution\n lognormal_dist = tfp.distributions.LogNormal(mu_log, std_log)\n # Draw 10,000 samples\n lognormal_samples = lognormal_dist.sample(10000).numpy()"]]