以下各部分中提供了模拟数据,作为每种数据类型和格式的示例。
CSV
使用 CsvDataLoader 加载模拟 CSV 数据:
将列名称映射到变量类型。所需的变量类型为
time、geo、controls、population、kpi、revenue_per_kpi、media和media_spend。对于没有直接费用的媒体渠道,您必须将其媒体曝光分配给organic_media。对于非媒体处理,您必须将相应的列名称分配给non_media_treatments。如需了解每个变量的定义,请参阅收集和整理数据。coord_to_columns = load.CoordToColumns( time='time', geo='geo', controls=['GQV', 'Competitor_Sales'], population='population', kpi='conversions', revenue_per_kpi='revenue_per_conversion', media=[ 'Channel0_impression', 'Channel1_impression', 'Channel2_impression', 'Channel3_impression', 'Channel4_impression', ], media_spend=[ 'Channel0_spend', 'Channel1_spend', 'Channel2_spend', 'Channel3_spend', 'Channel4_spend', ], organic_media=['Organic_channel0_impression'], non_media_treatments=['Promo'], )将媒体变量和媒体支出映射到要在双页输出中显示的指定渠道名称。在以下示例中,
Channel0_impression和Channel0_spend连接到同一个渠道Channel0。correct_media_to_channel = { 'Channel0_impression': 'Channel0', 'Channel1_impression': 'Channel1', 'Channel2_impression': 'Channel2', 'Channel3_impression': 'Channel3', 'Channel4_impression': 'Channel4', } correct_media_spend_to_channel = { 'Channel0_spend': 'Channel0', 'Channel1_spend': 'Channel1', 'Channel2_spend': 'Channel2', 'Channel3_spend': 'Channel3', 'Channel4_spend': 'Channel4', }使用
CsvDataLoader加载数据:loader = load.CsvDataLoader( csv_path=f'/{PATH}/{FILENAME}.csv', kpi_type='non_revenue', coord_to_columns=coord_to_columns, media_to_channel=correct_media_to_channel, media_spend_to_channel=correct_media_spend_to_channel, ) data = loader.load()其中:
kpi_type是'revenue'或'non_revenue'。PATH表示指向数据文件位置的路径。FILENAME表示数据文件的名称。
Xarray 数据集
使用 XrDatasetDataLoader 加载模拟 Xarray 数据集:
使用
pickle加载数据:import pickle with open(f'/{PATH}/{FILENAME}.pkl', 'r') as fh: XrDataset=pickle.load(fh)其中:
PATH表示指向数据文件位置的路径。FILENAME表示数据文件的名称。
将数据集传递给
XrDatasetDataLoader。使用name_mapping实参映射坐标和数组。如果输入数据集内的名称与所需名称不同,请提供映射。所需的坐标名称为geo、time、control_variable、media_channel、organic_media_channel和non_media_channel。所需的数据变量名称为kpi、revenue_per_kpi、controls、population、media、media_spend、organic_media和non_media_treatments。loader = load.XrDatasetDataLoader( XrDataset, kpi_type='non_revenue', name_mapping={'channel': 'media_channel', 'control': 'control_variable', 'organic_channel': 'organic_media_channel', 'non_media_treatment': 'non_media_channel', 'conversions': 'kpi', 'revenue_per_conversion': 'revenue_per_kpi', 'control_value': 'controls', 'spend': 'media_spend', 'non_media_treatment_value': 'non_media_treatments'}, ) data = loader.load()其中:
kpi_type是'revenue'或'non_revenue'。
Numpy 多维数组
如需直接加载 NumPy 多维数组,请使用 NDArrayInputDataBuilder:
将数据创建为单独的 NumPy 多维数组。
import numpy as np kpi_nd = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) controls_nd = np.array([ [[1, 5], [2, 6], [3, 4]], [[7, 8], [9, 10], [11, 12]], [[13, 14], [15, 16], [17, 18]], ]) population_nd = np.array([1, 2, 3]) revenue_per_kpi_nd = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) media_nd = np.array([ [[1, 5], [2, 6], [3, 4]], [[7, 8], [9, 10], [11, 12]], [[13, 14], [15, 16], [17, 18]], ]) media_spend_nd = np.array([ [[1, 5], [2, 6], [3, 4]], [[7, 8], [9, 10], [11, 12]], [[13, 14], [15, 16], [17, 18]], ]) organic_media_nd = np.array([ [[1, 5], [2, 6], [3, 4]], [[7, 8], [9, 10], [11, 12]], [[13, 14], [15, 16], [17, 18]], ]) non_media_treatments_nd = np.array([ [[1, 5], [2, 6], [3, 4]], [[7, 8], [9, 10], [11, 12]], [[13, 14], [15, 16], [17, 18]], ])使用
NDArrayInputDataBuilder设置时间和地理位置,并根据 Meridian 输入数据中的要求指定渠道或维度名称。如需了解每个变量的定义,请参阅收集和整理数据。from meridian.data import nd_array_input_data_builder as data_builder builder = ( data_builder.NDArrayInputDataBuilder(kpi_type='non_revenue') ) builder.time_coords = ['2024-01-02', '2024-01-03', '2024-01-01'] builder.media_time_coords = ['2024-01-02', '2024-01-03', '2024-01-01'] builder.geos = ['B', 'A', 'C'] builder = ( builder .with_kpi(kpi_nd) .with_revenue_per_kpi(revenue_per_kpi_nd) .with_population(population_nd) .with_controls( controls_nd, control_names=["control0", "control1"]) .with_media( m_nd=media_nd, ms_nd=media_spend_nd, media_channels=["channel0", "channel1"] ) .with_organic_media( organic_media_nd, organic_media_channels=["organic_channel0", "organic_channel1"] ).with_non_media_treatments( non_media_treatments_nd, non_media_channel_names=["non_media_channel0", "non_media_channel1"] ) ) data = builder.build()其中:
kpi_type是'revenue'或'non_revenue'。
Pandas DataFrame 或其他数据格式
使用 DataFrameInputDataBuilder 加载模拟的其他数据格式(例如 excel):
将数据(例如
excel电子表格)读入一个或多个 PandasDataFrame。import pandas as pd df = pd.read_excel( 'https://github.com/google/meridian/raw/main/meridian/data/simulated_data/xlsx/geo_all_channels.xlsx', engine='openpyxl', )使用
DataFrameInputDataBuilder将列名称映射到 Meridian 输入数据所需的变量类型。如需了解每个变量的定义,请参阅收集和整理数据。from meridian.data import data_frame_input_data_builder as data_builder builder = data_builder.DataFrameInputDataBuilder( kpi_type='non_revenue', default_kpi_column="conversions", default_revenue_per_kpi_column="revenue_per_conversion", ) builder = ( builder .with_kpi(df) .with_revenue_per_kpi(df) .with_population(df) .with_controls(df, control_cols=["GQV", "Competitor_Sales"]) ) channels = ["Channel0", "Channel1", "Channel2", "Channel3", "Channel4"] builder = builder.with_media( df, media_cols=[f"{channel}_impression" for channel in channels], media_spend_cols=[f"{channel}_spend" for channel in channels], media_channels=channels, ) builder = ( builder .with_organic_media( df, organic_media_cols = ["Organic_channel0_impression"], organic_media_channels = ["Organic_channel0"], ) .with_non_media_treatments( df, non_media_treatment_cols=['Promo'] ) ) data = builder.build()其中:
kpi_type是'revenue'或'non_revenue'。
接下来,您可以创建模型。