以下各部分提供了各种不同数据类型和格式的模拟数据示例。
CSV
使用 CsvDataLoader 加载模拟 CSV 数据:
- 将列名称映射到变量类型。所需的变量类型为 - time、- geo、- controls、- population、- kpi、- revenue_per_kpi、- media和- media_spend。如需了解每个变量的定义,请参阅收集和整理数据。- coord_to_columns = load.CoordToColumns( time='time', geo='geo', controls=['GQV', 'Discount', 'Competitor_Sales'], population='population', kpi='conversions', revenue_per_kpi='revenue_per_conversion', media=[ 'Channel0_impression', 'Channel1_impression', 'Channel2_impression', 'Channel3_impression', 'Channel4_impression', 'Channel5_impression', ], media_spend=[ 'Channel0_spend', 'Channel1_spend', 'Channel2_spend', 'Channel3_spend', 'Channel4_spend', 'Channel5_spend', ], )
- 将媒体变量和媒体支出映射到您希望在两页输出中显示的指定渠道名称。在以下示例中, - Channel0_impression和- Channel0_spend关联到同一个渠道- Channel0。- correct_media_to_channel = { 'Channel0_impression': 'Channel0', 'Channel1_impression': 'Channel1', 'Channel2_impression': 'Channel2', 'Channel3_impression': 'Channel3', 'Channel4_impression': 'Channel4', 'Channel5_impression': 'Channel5', } correct_media_spend_to_channel = { 'Channel0_spend': 'Channel0', 'Channel1_spend': 'Channel1', 'Channel2_spend': 'Channel2', 'Channel3_spend': 'Channel3', 'Channel4_spend': 'Channel4', 'Channel5_spend': 'Channel5', }
- 使用 - CsvDataLoader加载数据:- loader = load.CsvDataLoader( csv_path=f'/{PATH}/{FILENAME}.csv', kpi_type='non_revenue', coord_to_columns=coord_to_columns, media_to_channel=correct_media_to_channel, media_spend_to_channel=correct_media_spend_to_channel, ) data = loader.load()- 其中: - kpi_type是- 'revenue'或- 'non_revenue'。
- PATH表示指向数据文件位置的路径。
- FILENAME表示数据文件的名称。
 
Xarray 数据集
使用 XrDatasetDataLoader 加载序列化模拟 Xarray 数据集:
- 使用 - pickle加载数据:- import pickle with open(f'/{PATH}/{FILENAME}.pkl', 'r') as fh: dataset = pickle.load(fh)- 其中: - PATH表示指向数据文件位置的路径。
- FILENAME表示数据文件的名称。
 
- 将数据集传递给 - XrDatasetDataLoader。使用- name_mapping实参为坐标和数组建立映射关系。如果输入数据集内的名称与所需名称不同,请提供映射。所需的坐标名称为- geo、- time、- control_variable和- media_channel。所需的数据变量名称为- kpi、- revenue_per_kpi、- controls、- population、- media和- media_spend。- loader = load.XrDatasetDataLoader( dataset, kpi_type='non_revenue', name_mapping={ 'channel': 'media_channel', 'control': 'control_variable', 'conversions': 'kpi', 'revenue_per_conversion': 'revenue_per_kpi', 'control_value': 'controls', 'spend': 'media_spend', }, ) data = loader.load()- 其中: - kpi_type是- 'revenue'或- 'non_revenue'。
 
Numpy 多维数组
如需直接加载 NumPy 多维数组,请使用 NDArrayInputDataBuilder:
- 将数据创建为多个独立的 NumPy 多维数组。 - import numpy as np kpi_nd = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) controls_nd = np.array([ [[1, 5], [2, 6], [3, 4]], [[7, 8], [9, 10], [11, 12]], [[13, 14], [15, 16], [17, 18]], ]) population_nd = np.array([1, 2, 3]) revenue_per_kpi_nd = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) media_nd = np.array([ [[1, 5], [2, 6], [3, 4]], [[7, 8], [9, 10], [11, 12]], [[13, 14], [15, 16], [17, 18]], ]) media_spend_nd = np.array([ [[1, 5], [2, 6], [3, 4]], [[7, 8], [9, 10], [11, 12]], [[13, 14], [15, 16], [17, 18]], ])
- 使用 - NDArrayInputDataBuilder设置时间和地理位置,并根据 Meridian 输入数据中的要求指定渠道或维度名称。如需了解每个变量的定义,请参阅收集和整理数据。- from meridian.data import nd_array_input_data_builder as data_builder builder = ( data_builder.NDArrayInputDataBuilder(kpi_type='non_revenue') ) builder.time_coords = ['2024-01-02', '2024-01-03', '2024-01-01'] builder.media_time_coords = ['2024-01-02', '2024-01-03', '2024-01-01'] builder.geos = ['B', 'A', 'C'] builder = ( builder .with_kpi(kpi_nd) .with_revenue_per_kpi(revenue_per_kpi_nd) .with_population(population_nd) .with_controls( controls_nd, control_names=["control0", "control1"]) .with_media( m_nd=media_nd, ms_nd=media_spend_nd, media_channels=["channel0", "channel1"] ) ) data = builder.build()- 其中: - kpi_type是- 'revenue'或- 'non_revenue'。
 
Pandas DataFrame 或其他数据格式
使用 DataFrameInputDataBuilder 加载模拟的其他数据格式(例如 excel):
- 将数据(例如 - excel电子表格)读入一个或多个 Pandas- DataFrame。- import pandas as pd df = pd.read_excel( 'https://github.com/google/meridian/raw/main/meridian/data/simulated_data/xlsx/geo_media.xlsx', engine='openpyxl', )
- 使用 - DataFrameInputDataBuilder将列名称映射到 Meridian 输入数据所需的变量类型。如需了解每个变量的定义,请参阅收集和整理数据。- from meridian.data import data_frame_input_data_builder as data_builder builder = data_builder.DataFrameInputDataBuilder( kpi_type='non_revenue', default_kpi_column="conversions", default_revenue_per_kpi_column="revenue_per_conversion", ) builder = ( builder .with_kpi(df) .with_revenue_per_kpi(df) .with_population(df) .with_controls(df, control_cols=["GQV", "Discount", "Competitor_Sales"]) ) channels = ["Channel0", "Channel1", "Channel2", "Channel3", "Channel4", "Channel5"] builder = builder.with_media( df, media_cols=[f"{channel}_impression" for channel in channels], media_spend_cols=[f"{channel}_spend" for channel in channels], media_channels=channels, ) data = builder.build()- 其中: - kpi_type是- 'revenue'或- 'non_revenue'。
 
接下来,您可以创建模型。
