新しく開設された
Discord コミュニティに参加して、リアルタイムのディスカッション、ユーザー同士のサポート、メリディアン チームとの直接の交流をお楽しみください。
リーチとフリークエンシーのデータがない地域レベルのデータを読み込む
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
それぞれのデータ型と形式の例として、シミュレートされたデータを次のセクションに示します。
CSV
CsvDataLoader
を使ってシミュレートされた CSV データを読み込む手順は次のとおりです。
列名を変数型にマッピングします。必要な変数型は time
、geo
、controls
、population
、kpi
、revenue_per_kpi
、media
、media_spend
です。各変数の定義については、データの収集と整理をご覧ください。
coord_to_columns = load.CoordToColumns(
time='time',
geo='geo',
controls=['GQV', 'Discount', 'Competitor_Sales'],
population='population',
kpi='conversions',
revenue_per_kpi='revenue_per_conversion',
media=[
'Channel0_impression',
'Channel1_impression',
'Channel2_impression',
'Channel3_impression',
'Channel4_impression',
'Channel5_impression',
],
media_spend=[
'Channel0_spend',
'Channel1_spend',
'Channel2_spend',
'Channel3_spend',
'Channel4_spend',
'Channel5_spend',
],
)
メディア変数とメディア費用を、2 ページの出力に表示する指定されたチャネル名にマッピングします。次の例では、Channel0_impression
と Channel0_spend
が同じチャネル Channel0
に接続されています。
correct_media_to_channel = {
'Channel0_impression': 'Channel0',
'Channel1_impression': 'Channel1',
'Channel2_impression': 'Channel2',
'Channel3_impression': 'Channel3',
'Channel4_impression': 'Channel4',
'Channel5_impression': 'Channel5',
}
correct_media_spend_to_channel = {
'Channel0_spend': 'Channel0',
'Channel1_spend': 'Channel1',
'Channel2_spend': 'Channel2',
'Channel3_spend': 'Channel3',
'Channel4_spend': 'Channel4',
'Channel5_spend': 'Channel5',
}
次のように CsvDataLoader
を使用して、データを読み込みます。
loader = load.CsvDataLoader(
csv_path=f'/{PATH}/{FILENAME}.csv',
kpi_type='non_revenue',
coord_to_columns=coord_to_columns,
media_to_channel=correct_media_to_channel,
media_spend_to_channel=correct_media_spend_to_channel,
)
data = loader.load()
ここで
kpi_type
は、'revenue'
か 'non_revenue'
のいずれかです。
PATH
は、データファイルの場所へのパスです。
FILENAME
はデータファイルの名前です。
Xarray データセット
pickle 化されシミュレートされた Xarray データセットを XrDatasetDataLoader
を使って読み込む手順は次のとおりです。
次のように pickle
を使ってデータを読み込みます。
import pickle
with open(f'/{PATH}/{FILENAME}.pkl', 'r') as fh:
dataset = pickle.load(fh)
ここで
PATH
は、データファイルの場所へのパスです。
FILENAME
はデータファイルの名前です。
データセットを XrDatasetDataLoader
に渡します。name_mapping
引数を使用して、座標と配列をマッピングします。入力データセットでの名前が必須の名前と異なる場合は、それらの名前をマッピングします。必須の座標名は geo
、time
、control_variable
、media_channel
です。必須のデータ変数名は kpi
、revenue_per_kpi
、controls
、population
、media
、media_spend
です。
loader = load.XrDatasetDataLoader(
dataset,
kpi_type='non_revenue',
name_mapping={
'channel': 'media_channel',
'control': 'control_variable',
'conversions': 'kpi',
'revenue_per_conversion': 'revenue_per_kpi',
'control_value': 'controls',
'spend': 'media_spend',
},
)
data = loader.load()
詳細は次のとおりです。
kpi_type
は、'revenue'
か 'non_revenue'
のいずれかです。
NumPy ndarray
numpy ndarray を直接読み込むには、NDArrayInputDataBuilder
を使用します。
データを個別の numpy ndarray に作成します。
import numpy as np
kpi_nd = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
controls_nd = np.array([
[[1, 5], [2, 6], [3, 4]],
[[7, 8], [9, 10], [11, 12]],
[[13, 14], [15, 16], [17, 18]],
])
population_nd = np.array([1, 2, 3])
revenue_per_kpi_nd = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
media_nd = np.array([
[[1, 5], [2, 6], [3, 4]],
[[7, 8], [9, 10], [11, 12]],
[[13, 14], [15, 16], [17, 18]],
])
media_spend_nd = np.array([
[[1, 5], [2, 6], [3, 4]],
[[7, 8], [9, 10], [11, 12]],
[[13, 14], [15, 16], [17, 18]],
])
NDArrayInputDataBuilder
を使って、時間と地域を設定し、メリディアンの入力データで必要に応じてチャンネル名またはディメンション名を指定します。各変数の定義については、データの収集と整理をご覧ください。
from meridian.data import nd_array_input_data_builder as data_builder
builder = (
data_builder.NDArrayInputDataBuilder(kpi_type='non_revenue')
)
builder.time_coords = ['2024-01-02', '2024-01-03', '2024-01-01']
builder.media_time_coords = ['2024-01-02', '2024-01-03', '2024-01-01']
builder.geos = ['B', 'A', 'C']
builder = (
builder
.with_kpi(kpi_nd)
.with_revenue_per_kpi(revenue_per_kpi_nd)
.with_population(population_nd)
.with_controls(
controls_nd,
control_names=["control0", "control1"])
.with_media(
m_nd=media_nd,
ms_nd=media_spend_nd,
media_channels=["channel0", "channel1"]
)
)
data = builder.build()
詳細は次のとおりです。
kpi_type
は、'revenue'
か 'non_revenue'
のいずれかです。
シミュレートされた他のデータ形式(excel
など)を DataFrameInputDataBuilder
を使って読み込む手順は次のとおりです。
データ(excel
スプレッドシートなど)を 1 つ以上の Pandas DataFrame
に読み込みます。
import pandas as pd
df = pd.read_excel(
'https://github.com/google/meridian/raw/main/meridian/data/simulated_data/xlsx/geo_media.xlsx',
engine='openpyxl',
)
DataFrameInputDataBuilder
を使って、列名をメリディアンの入力データで必要な変数型にマッピングします。各変数の定義については、データの収集と整理をご覧ください。
from meridian.data import data_frame_input_data_builder as data_builder
builder = data_builder.DataFrameInputDataBuilder(
kpi_type='non_revenue',
default_kpi_column="conversions",
default_revenue_per_kpi_column="revenue_per_conversion",
)
builder = (
builder
.with_kpi(df)
.with_revenue_per_kpi(df)
.with_population(df)
.with_controls(df, control_cols=["GQV", "Discount", "Competitor_Sales"])
)
channels = ["Channel0", "Channel1", "Channel2", "Channel3", "Channel4", "Channel5"]
builder = builder.with_media(
df,
media_cols=[f"{channel}_impression" for channel in channels],
media_spend_cols=[f"{channel}_spend" for channel in channels],
media_channels=channels,
)
data = builder.build()
詳細は次のとおりです。
kpi_type
は、'revenue'
か 'non_revenue'
のいずれかです。
次にモデルを作成します。
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-08-04 UTC。
[null,null,["最終更新日 2025-08-04 UTC。"],[[["\u003cp\u003eSimulated data examples are provided for CSV, Xarray Dataset, and other formats like Excel to demonstrate data loading.\u003c/p\u003e\n"],["\u003cp\u003eLoading CSV data requires mapping column names to predefined variable types and mapping media variables and spends to specific channel names using \u003ccode\u003eCsvDataLoader\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eLoading Xarray Dataset data involves using \u003ccode\u003epickle\u003c/code\u003e to read in data, and \u003ccode\u003eXrDatasetDataLoader\u003c/code\u003e for processing, which also requires mapping if dataset names differ from the required coordinate and variable names.\u003c/p\u003e\n"],["\u003cp\u003eLoading other data formats, like Excel, requires mapping column names and media channels, similar to CSV, but uses \u003ccode\u003eDataFrameDataLoader\u003c/code\u003e after reading the data into a dataframe.\u003c/p\u003e\n"],["\u003cp\u003eAfter loading the data in any of these formats, you may then proceed to creating a model.\u003c/p\u003e\n"]]],[],null,["# Load geo-level data without reach and frequency\n\nSimulated data is provided as an example for each data type and format in the\nfollowing sections.\n\nCSV\n---\n\nTo load the\n[simulated CSV](https://github.com/google/meridian/tree/main/meridian/data/simulated_data/csv/geo_media.csv)\ndata using `CsvDataLoader`:\n\n1. Map the column names to the variable types. The required variable types are\n `time`, `geo`, `controls`, `population`, `kpi`, `revenue_per_kpi`, `media`,\n and `media_spend`. For the definition of each variable, see\n [Collect and organize your data](/meridian/docs/user-guide/collect-data).\n\n coord_to_columns = load.CoordToColumns(\n time='time',\n geo='geo',\n controls=['GQV', 'Discount', 'Competitor_Sales'],\n population='population',\n kpi='conversions',\n revenue_per_kpi='revenue_per_conversion',\n media=[\n 'Channel0_impression',\n 'Channel1_impression',\n 'Channel2_impression',\n 'Channel3_impression',\n 'Channel4_impression',\n 'Channel5_impression',\n ],\n media_spend=[\n 'Channel0_spend',\n 'Channel1_spend',\n 'Channel2_spend',\n 'Channel3_spend',\n 'Channel4_spend',\n 'Channel5_spend',\n ],\n )\n\n2. Map the media variables and the media spends to the designated channel names\n that you want to display in the two-page output. In the following example,\n `Channel0_impression` and `Channel0_spend` are connected to the same\n channel, `Channel0`.\n\n correct_media_to_channel = {\n 'Channel0_impression': 'Channel0',\n 'Channel1_impression': 'Channel1',\n 'Channel2_impression': 'Channel2',\n 'Channel3_impression': 'Channel3',\n 'Channel4_impression': 'Channel4',\n 'Channel5_impression': 'Channel5',\n }\n correct_media_spend_to_channel = {\n 'Channel0_spend': 'Channel0',\n 'Channel1_spend': 'Channel1',\n 'Channel2_spend': 'Channel2',\n 'Channel3_spend': 'Channel3',\n 'Channel4_spend': 'Channel4',\n 'Channel5_spend': 'Channel5',\n }\n\n3. Load the data using `CsvDataLoader`:\n\n loader = load.CsvDataLoader(\n csv_path=f'/{PATH}/{FILENAME}.csv',\n kpi_type='non_revenue',\n coord_to_columns=coord_to_columns,\n media_to_channel=correct_media_to_channel,\n media_spend_to_channel=correct_media_spend_to_channel,\n )\n data = loader.load()\n\n Where:\n - `kpi_type` is either `'revenue'` or `'non_revenue'`.\n - `PATH` is the path to the data file location.\n - `FILENAME` is the name of your data file.\n\nXarray Dataset\n--------------\n\nTo load the pickled\n[simulated Xarray Dataset](https://github.com/google/meridian/tree/main/meridian/data/simulated_data/pkl/geo_media.pkl)\nusing `XrDatasetDataLoader`:\n\n1. Load the data using `pickle`:\n\n import pickle\n with open(f'/{PATH}/{FILENAME}.pkl', 'r') as fh:\n dataset = pickle.load(fh)\n\n Where:\n - `PATH` is the path to the data file location.\n - `FILENAME` is the name of your data file.\n2. Pass the dataset to `XrDatasetDataLoader`. Use the `name_mapping` argument\n to map the coordinates and arrays. Provide mapping if the names in the input\n dataset are different from the required names. The required coordinate\n names are `geo`, `time`, `control_variable` and `media_channel`. The\n required data variables names are `kpi`, `revenue_per_kpi`, `controls`,\n `population`, `media`, and `media_spend`.\n\n loader = load.XrDatasetDataLoader(\n dataset,\n kpi_type='non_revenue',\n name_mapping={\n 'channel': 'media_channel',\n 'control': 'control_variable',\n 'conversions': 'kpi',\n 'revenue_per_conversion': 'revenue_per_kpi',\n 'control_value': 'controls',\n 'spend': 'media_spend',\n },\n )\n\n data = loader.load()\n\n Where:\n - `kpi_type` is either `'revenue'` or `'non_revenue'`.\n\nNumpy ndarray\n-------------\n\nTo load numpy ndarrays directly, use `NDArrayInputDataBuilder`:\n\n1. Create the data into separate numpy ndarrays.\n\n import numpy as np\n\n kpi_nd = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n controls_nd = np.array([\n [[1, 5], [2, 6], [3, 4]],\n [[7, 8], [9, 10], [11, 12]],\n [[13, 14], [15, 16], [17, 18]],\n ])\n population_nd = np.array([1, 2, 3])\n revenue_per_kpi_nd = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n media_nd = np.array([\n [[1, 5], [2, 6], [3, 4]],\n [[7, 8], [9, 10], [11, 12]],\n [[13, 14], [15, 16], [17, 18]],\n ])\n media_spend_nd = np.array([\n [[1, 5], [2, 6], [3, 4]],\n [[7, 8], [9, 10], [11, 12]],\n [[13, 14], [15, 16], [17, 18]],\n ])\n\n2. Use a\n [`NDArrayInputDataBuilder`](https://github.com/google/meridian/blob/4624447e0aace5c24d42b58dd1cfd8fe0dc00971/meridian/data/nd_array_input_data_builder.py#L25)\n to set time and geos, as well as give channel or dimension\n names as required in a Meridian input data.\n For the definition of each variable, see\n [Collect and organize your data](/meridian/docs/user-guide/collect-data).\n\n from meridian.data import nd_array_input_data_builder as data_builder\n\n builder = (\n data_builder.NDArrayInputDataBuilder(kpi_type='non_revenue')\n )\n builder.time_coords = ['2024-01-02', '2024-01-03', '2024-01-01']\n builder.media_time_coords = ['2024-01-02', '2024-01-03', '2024-01-01']\n builder.geos = ['B', 'A', 'C']\n builder = (\n builder\n .with_kpi(kpi_nd)\n .with_revenue_per_kpi(revenue_per_kpi_nd)\n .with_population(population_nd)\n .with_controls(\n controls_nd,\n control_names=[\"control0\", \"control1\"])\n .with_media(\n m_nd=media_nd,\n ms_nd=media_spend_nd,\n media_channels=[\"channel0\", \"channel1\"]\n )\n )\n\n data = builder.build()\n\n Where:\n - `kpi_type` is either `'revenue'` or `'non_revenue'`.\n\nPandas DataFrames or other data formats\n---------------------------------------\n\nTo load the\n[simulated other data format](https://github.com/google/meridian/tree/main/meridian/data/simulated_data/xlsx/geo_media.xlsx)\n(such as `excel`) using `DataFrameInputDataBuilder`:\n\n1. Read the data (such as an `excel` spreadsheet) into one or more Pandas\n `DataFrame`(s).\n\n import pandas as pd\n\n df = pd.read_excel(\n 'https://github.com/google/meridian/raw/main/meridian/data/simulated_data/xlsx/geo_media.xlsx',\n engine='openpyxl',\n )\n\n2. Use a\n [`DataFrameInputDataBuilder`](https://github.com/google/meridian/blob/4624447e0aace5c24d42b58dd1cfd8fe0dc00971/meridian/data/data_frame_input_data_builder.py#L25)\n to map column names to the variable types required in a Meridian input data.\n For the definition of each variable, see\n [Collect and organize your data](/meridian/docs/user-guide/collect-data).\n\n from meridian.data import data_frame_input_data_builder as data_builder\n\n builder = data_builder.DataFrameInputDataBuilder(\n kpi_type='non_revenue',\n default_kpi_column=\"conversions\",\n default_revenue_per_kpi_column=\"revenue_per_conversion\",\n )\n builder = (\n builder\n .with_kpi(df)\n .with_revenue_per_kpi(df)\n .with_population(df)\n .with_controls(df, control_cols=[\"GQV\", \"Discount\", \"Competitor_Sales\"])\n )\n channels = [\"Channel0\", \"Channel1\", \"Channel2\", \"Channel3\", \"Channel4\", \"Channel5\"]\n builder = builder.with_media(\n df,\n media_cols=[f\"{channel}_impression\" for channel in channels],\n media_spend_cols=[f\"{channel}_spend\" for channel in channels],\n media_channels=channels,\n )\n\n data = builder.build()\n\n Where:\n - `kpi_type` is either `'revenue'` or `'non_revenue'`.\n\nNext, you can [create your model](/meridian/docs/user-guide/modeling-overview)."]]