Treten Sie der neuen
Discord-Community bei. Sie können sich dort in Echtzeit austauschen, Unterstützung von anderen Nutzern erhalten und direkt mit dem Meridian-Team interagieren.
Daten auf Länderebene laden
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
In den folgenden Abschnitten werden für jeden Datentyp und jedes Format simulierte Daten als Beispiel zur Verfügung gestellt.
CSV
So laden Sie die simulierten CSV-Daten mit CsvDataLoader
:
Ordnen Sie die Spaltennamen den Variablentypen zu. Die erforderlichen Variablentypen sind time
, controls
, kpi
, revenue_per_kpi
, media
und media_spend
. Die Definition der einzelnen Variablen finden Sie unter Daten erheben und organisieren.
coord_to_columns = load.CoordToColumns(
time='time',
controls=['GQV', 'Discount', 'Competitor_Sales'],
kpi='conversions',
revenue_per_kpi='revenue_per_conversion',
media=[
'Channel0_impression',
'Channel1_impression',
'Channel2_impression',
'Channel3_impression',
'Channel4_impression',
'Channel5_impression',
],
media_spend=[
'Channel0_spend',
'Channel1_spend',
'Channel2_spend',
'Channel3_spend',
'Channel4_spend',
'Channel5_spend',
],
)
Ordnen Sie die Media-Variablen und die ‑Ausgaben den angegebenen Channel-Namen zu, die in der zweiseitigen Ausgabe angezeigt werden sollen. Im folgenden Beispiel sind Channel0_impression
und Channel0_spend
mit demselben Channel (Channel0
) verbunden.
correct_media_to_channel = {
'Channel0_impression': 'Channel0',
'Channel1_impression': 'Channel1',
'Channel2_impression': 'Channel2',
'Channel3_impression': 'Channel3',
'Channel4_impression': 'Channel4',
'Channel5_impression': 'Channel5',
}
correct_media_spend_to_channel = {
'Channel0_spend': 'Channel0',
'Channel1_spend': 'Channel1',
'Channel2_spend': 'Channel2',
'Channel3_spend': 'Channel3',
'Channel4_spend': 'Channel4',
'Channel5_spend': 'Channel5',
}
Laden Sie die Daten mit CsvDataLoader
:
loader = load.CsvDataLoader(
csv_path=f'/{PATH}/{FILENAME}.csv',
kpi_type='non_revenue',
coord_to_columns=coord_to_columns,
media_to_channel=correct_media_to_channel,
media_spend_to_channel=correct_media_spend_to_channel,
)
data = loader.load()
Dabei gilt:
kpi_type
ist entweder 'revenue'
oder 'non_revenue'
.
PATH
ist der Pfad zum Speicherort der Datendatei.
FILENAME
ist der Name Ihrer Datendatei.
Xarray-Dataset
So laden Sie das simulierte Xarray-Dataset mit XrDatasetDataLoader
:
Laden Sie die Daten mit pickle
:
import pickle
with open(f'/{PATH}/{FILENAME}.pkl', 'r') as fh:
XrDataset=pickle.load(fh)
Dabei gilt:
PATH
ist der Pfad zum Speicherort der Datendatei.
FILENAME
ist der Name Ihrer Datendatei.
Übergeben Sie das Dataset an XrDatasetDataLoader
. Verwenden Sie das Argument name_mapping
, um die Koordinaten und Arrays zuzuordnen. Geben Sie eine Zuordnung an, wenn sich die Namen im Dataset für die Eingabe von den erforderlichen Namen unterscheiden. Die Namen der erforderlichen Koordinaten sind time
, control_variable
und media_channel
. Die Namen der erforderlichen Datenvariablen sind kpi
, revenue_per_kpi
, controls
, media
und media_spend
.
loader = load.XrDatasetDataLoader(
XrDataset,
kpi_type='non_revenue',
name_mapping={'channel': 'media_channel',
'control': 'control_variable',
'conversions': 'kpi',
'revenue_per_conversion': 'revenue_per_kpi',
'control_value': 'controls',
'spend': 'media_spend'},
)
data = loader.load()
Dabei gilt:
kpi_type
ist entweder 'revenue'
oder 'non_revenue'
.
N-dimensionales Array von NumPy
Wenn Sie n-dimensionale Arrays von NumPy direkt laden möchten, verwenden Sie NDArrayInputDataBuilder
:
Erstellen Sie die Daten in separaten n-dimensionalen Arrays von NumPy.
import numpy as np
kpi_nd = np.array([[1, 2, 3]])
controls_nd = np.array([[[1, 2], [3, 4], [5, 6]]])
revenue_per_kpi_nd = np.array([[1, 2, 3]])
media_nd = np.array([[[1, 2], [3, 4], [5, 6]]])
media_spend_nd = np.array([[[1, 2], [3, 4], [5, 6]]])
Verwenden Sie einen NDArrayInputDataBuilder
, um Zeiten festzulegen und Channel- oder Dimensionsnamen anzugeben, wie in Meridian-Eingabedaten erforderlich.
Die Definition der einzelnen Variablen finden Sie unter Daten erheben und organisieren.
from meridian.data import nd_array_input_data_builder as data_builder
builder = (
data_builder.NDArrayInputDataBuilder(kpi_type='non_revenue')
)
builder.time_coords = ['2024-01-02', '2024-01-03', '2024-01-01']
builder.media_time_coords = ['2024-01-02', '2024-01-03', '2024-01-01']
builder = (
builder
.with_kpi(kpi_nd)
.with_revenue_per_kpi(revenue_per_kpi_nd)
.with_controls(
controls_nd,
control_names=["control0", "control1"])
.with_media(
m_nd=media_nd,
ms_nd=media_spend_nd,
media_channels=["channel0", "channel1"]
)
)
data = builder.build()
Dabei gilt:
kpi_type
ist entweder 'revenue'
oder 'non_revenue'
.
So laden Sie ein anderes Format für simulierte Daten (z. B. excel
) mit DataFrameInputDataBuilder
:
Lesen Sie die Daten (z. B. eine excel
-Tabelle) in ein oder mehrere Pandas-DataFrame
s ein.
import pandas as pd
df = pd.read_excel(
'https://github.com/google/meridian/raw/main/meridian/data/simulated_data/xlsx/national_media.xlsx',
engine='openpyxl',
)
Verwenden Sie einen DataFrameInputDataBuilder
, um Spaltennamen den Variablentypen zuzuordnen, die in Meridian-Eingabedaten erforderlich sind.
Die Definition der einzelnen Variablen finden Sie unter Daten erheben und organisieren.
from meridian.data import data_frame_input_data_builder as data_builder
builder = data_builder.DataFrameInputDataBuilder(
kpi_type='non_revenue',
default_kpi_column="conversions",
default_revenue_per_kpi_column="revenue_per_conversion",
)
builder = (
builder
.with_kpi(df)
.with_revenue_per_kpi(df)
.with_controls(df, control_cols=["GQV", "Discount", "Competitor_Sales"])
)
channels = ["Channel0", "Channel1", "Channel2", "Channel3", "Channel4", "Channel5"]
builder = builder.with_media(
df,
media_cols=[f"{channel}_impression" for channel in channels],
media_spend_cols=[f"{channel}_spend" for channel in channels],
media_channels=channels,
)
data = builder.build()
Dabei gilt:
kpi_type
ist entweder 'revenue'
oder 'non_revenue'
.
Als Nächstes können Sie Ihr Modell erstellen.
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-08-04 (UTC).
[null,null,["Zuletzt aktualisiert: 2025-08-04 (UTC)."],[[["\u003cp\u003eSimulated data examples are provided for CSV, Xarray Dataset, and other formats like Excel.\u003c/p\u003e\n"],["\u003cp\u003eLoading CSV data requires mapping column names to variable types such as \u003ccode\u003etime\u003c/code\u003e, \u003ccode\u003econtrols\u003c/code\u003e, \u003ccode\u003ekpi\u003c/code\u003e, \u003ccode\u003erevenue_per_kpi\u003c/code\u003e, \u003ccode\u003emedia\u003c/code\u003e, and \u003ccode\u003emedia_spend\u003c/code\u003e, and media variables and spends need mapping to channel names, using \u003ccode\u003eCsvDataLoader\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eXarray Dataset loading involves using \u003ccode\u003eXrDatasetDataLoader\u003c/code\u003e, passing the dataset after loading with \u003ccode\u003epickle\u003c/code\u003e, and mapping coordinates and arrays with the \u003ccode\u003ename_mapping\u003c/code\u003e argument.\u003c/p\u003e\n"],["\u003cp\u003eLoading data from other formats like Excel utilizes \u003ccode\u003eDataFrameDataLoader\u003c/code\u003e after mapping column names to variable types and mapping media to channels, and reading the data.\u003c/p\u003e\n"],["\u003cp\u003eAll three loaders use a \u003ccode\u003ekpi_type\u003c/code\u003e parameter which can either be \u003ccode\u003e'revenue'\u003c/code\u003e or \u003ccode\u003e'non_revenue'\u003c/code\u003e.\u003c/p\u003e\n"]]],[],null,["# Load national-level data\n\nSimulated data is provided as an example for each data type and format in the\nfollowing sections.\n\nCSV\n---\n\nTo load the [simulated CSV\ndata](https://github.com/google/meridian/tree/main/meridian/data/simulated_data/csv/national_media.csv)\nusing `CsvDataLoader`:\n\n1. Map the column names to the variable types. The required variable types are\n `time`, `controls`, `kpi`, `revenue_per_kpi`, `media` and `media_spend`. For\n the definition of each variable, see [Collect and organize your data](/meridian/docs/user-guide/collect-data).\n\n coord_to_columns = load.CoordToColumns(\n time='time',\n controls=['GQV', 'Discount', 'Competitor_Sales'],\n kpi='conversions',\n revenue_per_kpi='revenue_per_conversion',\n media=[\n 'Channel0_impression',\n 'Channel1_impression',\n 'Channel2_impression',\n 'Channel3_impression',\n 'Channel4_impression',\n 'Channel5_impression',\n ],\n media_spend=[\n 'Channel0_spend',\n 'Channel1_spend',\n 'Channel2_spend',\n 'Channel3_spend',\n 'Channel4_spend',\n 'Channel5_spend',\n ],\n )\n\n2. Map the media variables and the media spends to the designated channel names\n that you want to display in the two-page output. In the following example,\n `Channel0_impression` and `Channel0_spend` are connected to the same\n channel, `Channel0`.\n\n correct_media_to_channel = {\n 'Channel0_impression': 'Channel0',\n 'Channel1_impression': 'Channel1',\n 'Channel2_impression': 'Channel2',\n 'Channel3_impression': 'Channel3',\n 'Channel4_impression': 'Channel4',\n 'Channel5_impression': 'Channel5',\n }\n correct_media_spend_to_channel = {\n 'Channel0_spend': 'Channel0',\n 'Channel1_spend': 'Channel1',\n 'Channel2_spend': 'Channel2',\n 'Channel3_spend': 'Channel3',\n 'Channel4_spend': 'Channel4',\n 'Channel5_spend': 'Channel5',\n }\n\n3. Load the data using `CsvDataLoader`:\n\n loader = load.CsvDataLoader(\n csv_path=f'/{PATH}/{FILENAME}.csv',\n kpi_type='non_revenue',\n coord_to_columns=coord_to_columns,\n media_to_channel=correct_media_to_channel,\n media_spend_to_channel=correct_media_spend_to_channel,\n )\n data = loader.load()\n\n Where:\n - `kpi_type` is either `'revenue'` or `'non_revenue'`.\n - `PATH` is the path to the data file location.\n - `FILENAME` is the name of your data file.\n\nXarray Dataset\n--------------\n\nTo load the [simulated Xarray\nDataset](https://github.com/google/meridian/tree/main/meridian/data/simulated_data/pkl/national_media.pkl)\nusing `XrDatasetDataLoader`:\n\n1. Load the data using `pickle`:\n\n import pickle\n with open(f'/{PATH}/{FILENAME}.pkl', 'r') as fh:\n XrDataset=pickle.load(fh)\n\n Where:\n - `PATH` is the path to the data file location.\n - `FILENAME` is the name of your data file.\n2. Pass the dataset to `XrDatasetDataLoader`. Use the `name_mapping` argument\n to map the coordinates and arrays. Provide mapping if the names in the input\n dataset are different from the required names. The required coordinate\n names are `time`, `control_variable`, and `media_channel`. The required\n data variables names are\n `kpi`, `revenue_per_kpi`, `controls`, `media`, and `media_spend`.\n\n loader = load.XrDatasetDataLoader(\n XrDataset,\n kpi_type='non_revenue',\n name_mapping={'channel': 'media_channel',\n 'control': 'control_variable',\n 'conversions': 'kpi',\n 'revenue_per_conversion': 'revenue_per_kpi',\n 'control_value': 'controls',\n 'spend': 'media_spend'},\n )\n\n data = loader.load()\n\n Where:\n - `kpi_type` is either `'revenue'` or `'non_revenue'`.\n\nNumpy ndarray\n-------------\n\nTo load numpy ndarrays directly, use `NDArrayInputDataBuilder`:\n\n1. Create the data into separate numpy ndarrays.\n\n import numpy as np\n\n kpi_nd = np.array([[1, 2, 3]])\n controls_nd = np.array([[[1, 2], [3, 4], [5, 6]]])\n revenue_per_kpi_nd = np.array([[1, 2, 3]])\n media_nd = np.array([[[1, 2], [3, 4], [5, 6]]])\n media_spend_nd = np.array([[[1, 2], [3, 4], [5, 6]]])\n\n2. Use a\n [`NDArrayInputDataBuilder`](https://github.com/google/meridian/blob/4624447e0aace5c24d42b58dd1cfd8fe0dc00971/meridian/data/nd_array_input_data_builder.py#L25)\n to set times, as well as give channel or dimension\n names as required in a Meridian input data.\n For the definition of each variable, see\n [Collect and organize your data](/meridian/docs/user-guide/collect-data).\n\n from meridian.data import nd_array_input_data_builder as data_builder\n\n builder = (\n data_builder.NDArrayInputDataBuilder(kpi_type='non_revenue')\n )\n builder.time_coords = ['2024-01-02', '2024-01-03', '2024-01-01']\n builder.media_time_coords = ['2024-01-02', '2024-01-03', '2024-01-01']\n builder = (\n builder\n .with_kpi(kpi_nd)\n .with_revenue_per_kpi(revenue_per_kpi_nd)\n .with_controls(\n controls_nd,\n control_names=[\"control0\", \"control1\"])\n .with_media(\n m_nd=media_nd,\n ms_nd=media_spend_nd,\n media_channels=[\"channel0\", \"channel1\"]\n )\n )\n\n data = builder.build()\n\n Where:\n - `kpi_type` is either `'revenue'` or `'non_revenue'`.\n\nPandas DataFrames or other data formats\n---------------------------------------\n\nTo load the [simulated other data\nformat](https://github.com/google/meridian/tree/main/meridian/data/simulated_data/xlsx/national_media.xlsx)\n(such as `excel`) using `DataFrameInputDataBuilder`:\n\n1. Read the data (such as an `excel` spreadsheet) into one or more Pandas `DataFrame`(s).\n\n import pandas as pd\n\n df = pd.read_excel(\n 'https://github.com/google/meridian/raw/main/meridian/data/simulated_data/xlsx/national_media.xlsx',\n engine='openpyxl',\n )\n\n2. Use a\n [`DataFrameInputDataBuilder`](https://github.com/google/meridian/blob/4624447e0aace5c24d42b58dd1cfd8fe0dc00971/meridian/data/data_frame_input_data_builder.py#L25)\n to map column names to the variable types required in a Meridian input data.\n For the definition of each variable, see\n [Collect and organize your data](/meridian/docs/user-guide/collect-data).\n\n from meridian.data import data_frame_input_data_builder as data_builder\n\n builder = data_builder.DataFrameInputDataBuilder(\n kpi_type='non_revenue',\n default_kpi_column=\"conversions\",\n default_revenue_per_kpi_column=\"revenue_per_conversion\",\n )\n builder = (\n builder\n .with_kpi(df)\n .with_revenue_per_kpi(df)\n .with_controls(df, control_cols=[\"GQV\", \"Discount\", \"Competitor_Sales\"])\n )\n channels = [\"Channel0\", \"Channel1\", \"Channel2\", \"Channel3\", \"Channel4\", \"Channel5\"]\n builder = builder.with_media(\n df,\n media_cols=[f\"{channel}_impression\" for channel in channels],\n media_spend_cols=[f\"{channel}_spend\" for channel in channels],\n media_channels=channels,\n )\n\n data = builder.build()\n\n Where:\n - `kpi_type` is either `'revenue'` or `'non_revenue'`.\n\nNext, you can [create your model](/meridian/docs/user-guide/modeling-overview)."]]