在 Android SDK 上稳定相机图片 (Kotlin/Java)

ARCore 现在支持电子防抖 (EIS),该技术有助于生成流畅的相机预览。EIS 采用陀螺仪观察手机的运动情况,并在相机纹理边界内应用补偿单应矩阵网格来达到防抖效果。EIS 仅在设备的纵向模式下受支持。1.39.0 版本的 ARCore 将支持所有屏幕方向。

查询 EIS 支持并启用 EIS

如需启用 EIS,请将会话配置为使用 ImageStabilizationMode.EIS。如果设备不支持 EIS 功能,会导致 ARCore 抛出异常。

JavaKotlin
if (!session.isImageStabilizationModeSupported(Config.ImageStabilizationMode.EIS)) {
  return;
}
Config config = session.getConfig();
config.setImageStabilizationMode(Config.ImageStabilizationMode.EIS);
session.configure(config);
if (!session.isImageStabilizationModeSupported(Config.ImageStabilizationMode.EIS)) return
session.configure(
  session.config.apply { imageStabilizationMode = Config.ImageStabilizationMode.EIS }
)

转换坐标

开启 EIS 后,渲染程序在渲染相机背景时需要使用修改后的设备坐标和包含 EIS 补偿的匹配纹理坐标。如需获取 EIS 补偿坐标,请使用 Frame.transformCoordinates3d(),使用 OPENGL_NORMALIZED_DEVICE_COORDINATES 作为输入,使用 EIS_NORMALIZED_DEVICE_COORDINATES 作为输出以获取 3D 设备坐标,使用 EIS_TEXTURE_NORMALIZED 作为输出来获取 3D 纹理坐标。目前,Frame.transformCoordinates3d() 唯一支持的输入坐标类型是 OPENGL_NORMALIZED_DEVICE_COORDINATES

JavaKotlin
final FloatBuffer cameraTexCoords =
    ByteBuffer.allocateDirect(COORDS_BUFFER_SIZE_3D)
        .order(ByteOrder.nativeOrder())
        .asFloatBuffer();

final FloatBuffer screenCoords =
    ByteBuffer.allocateDirect(COORDS_BUFFER_SIZE_3D)
        .order(ByteOrder.nativeOrder())
        .asFloatBuffer();

final FloatBuffer NDC_QUAD_COORDS_BUFFER =
    ByteBuffer.allocateDirect(COORDS_BUFFER_SIZE_2D)
        .order(ByteOrder.nativeOrder())
        .asFloatBuffer()
        .put(
            new float[] {
              /*0:*/ -1f, -1f, /*1:*/ +1f, -1f, /*2:*/ -1f, +1f, /*3:*/ +1f, +1f,
            });

final VertexBuffer screenCoordsVertexBuffer =
    new VertexBuffer(render, /* numberOfEntriesPerVertex= */ 3, null);
final VertexBuffer cameraTexCoordsVertexBuffer =
    new VertexBuffer(render, /* numberOfEntriesPerVertex= */ 3, null);

NDC_QUAD_COORDS_BUFFER.rewind();
frame.transformCoordinates3d(
    Coordinates2d.OPENGL_NORMALIZED_DEVICE_COORDINATES,
    NDC_QUAD_COORDS_BUFFER,
    Coordinates3d.EIS_NORMALIZED_DEVICE_COORDINATES,
    screenCoords);
screenCoordsVertexBuffer.set(screenCoords);

NDC_QUAD_COORDS_BUFFER.rewind();
frame.transformCoordinates3d(
    Coordinates2d.OPENGL_NORMALIZED_DEVICE_COORDINATES,
    NDC_QUAD_COORDS_BUFFER,
    Coordinates3d.EIS_TEXTURE_NORMALIZED,
    cameraTexCoords);
cameraTexCoordsVertexBuffer.set(cameraTexCoords);
val COORDS_BUFFER_SIZE_2D = 2 * 4 * Float.SIZE_BYTES
val COORDS_BUFFER_SIZE_3D = 3 * 4 * Float.SIZE_BYTES
val cameraTexCoords =
  ByteBuffer.allocateDirect(COORDS_BUFFER_SIZE_3D)
    .order(ByteOrder.nativeOrder())
    .asFloatBuffer()
val screenCoords =
  ByteBuffer.allocateDirect(COORDS_BUFFER_SIZE_3D)
    .order(ByteOrder.nativeOrder())
    .asFloatBuffer()
val cameraTexCoordsVertexBuffer = VertexBuffer(render, /* numberOfEntriesPerVertex= */ 3, null)
val screenCoordsVertexBuffer = VertexBuffer(render, /* numberOfEntriesPerVertex= */ 3, null)
val NDC_QUAD_COORDS_BUFFER =
  ByteBuffer.allocateDirect(COORDS_BUFFER_SIZE_2D)
    .order(ByteOrder.nativeOrder())
    .asFloatBuffer()
    .apply {
      put(
        floatArrayOf(
          /* 0: */
          -1f,
          -1f,
          /* 1: */
          +1f,
          -1f,
          /* 2: */
          -1f,
          +1f,
          /* 3: */
          +1f,
          +1f
        )
      )
    }
NDC_QUAD_COORDS_BUFFER.rewind()
frame.transformCoordinates3d(
  Coordinates2d.OPENGL_NORMALIZED_DEVICE_COORDINATES,
  NDC_QUAD_COORDS_BUFFER,
  Coordinates3d.EIS_NORMALIZED_DEVICE_COORDINATES,
  screenCoords
)
screenCoordsVertexBuffer.set(screenCoords)

NDC_QUAD_COORDS_BUFFER.rewind()
frame.transformCoordinates3d(
  Coordinates2d.OPENGL_NORMALIZED_DEVICE_COORDINATES,
  NDC_QUAD_COORDS_BUFFER,
  Coordinates3d.EIS_TEXTURE_NORMALIZED,
  cameraTexCoords
)
cameraTexCoordsVertexBuffer.set(cameraTexCoords)

当 EIS 处于关闭状态时,输出的 3D 坐标等同于对应的 2D 坐标,并将 z 值设为不产生任何变化。

修改着色器

计算的 3D 坐标应传递给背景渲染着色器。现在,顶点缓冲区为具有 EIS 的 3D:

layout(location = 0) in vec4 a_Position;
layout(location = 1) in vec3 a_CameraTexCoord;
out vec3 v_CameraTexCoord;
void main() {
  gl_Position = a_Position;
  v_CameraTexCoord = a_CameraTexCoord;
}

此外,fragment 着色器需要应用透视校正:

precision mediump float;
uniform samplerExternalOES u_CameraColorTexture;
in vec3 v_CameraTexCoord;
layout(location = 0) out vec4 o_FragColor;
void main() {
  vec3 tc = (v_CameraTexCoord / v_CameraTexCoord.z);
  o_FragColor = texture(u_CameraColorTexture, tc.xy);
}

如需了解详情,请参阅 hello_eis_kotlin 示例应用。