加入新推出的
Discord 社区,展开实时讨论,获得同行支持,并直接与 Meridian 团队互动!
因果估计量和估计
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
本部分介绍了 Meridian 如何定义主要的被估量,包括增量效果、投资回报率、边际投资回报率和响应曲线。这些量使用潜在结果和反事实(因果推理领域的用语)进行定义。
有了明确的被估量定义,您就可以查看营销组合建模分析 (MMM) 提供有效推理所需的假设。这些假设有助于确保模型确实能够估计出这些量。如果不满足假设条件,估计结果可能会出现严重偏差。
我们建议您针对任何 MMM 方法明确定义因果被估量和必要假设。否则,模型结果很可能被误解。影响更大的是,如果忽略了必要假设,分析结果可能会因严重的潜在偏差而变得毫无意义。
下一部分中的定义并不依赖于 Meridian 模型规范的任何方面。同样的定义适用于任何 MMM。定义因果被估量对于任何 MMM 分析都至关重要,这样才能使结果具有可解释性,并有助于确定特定模型在何种假设下才适合进行分析。
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-08-04。
[null,null,["最后更新时间 (UTC):2025-08-04。"],[[["\u003cp\u003eThis section outlines how to define primary estimands of interest in Marketing Mix Modeling (MMM), such as incremental outcome, ROI, marginal ROI, and response curves, using the framework of potential outcomes and counterfactuals.\u003c/p\u003e\n"],["\u003cp\u003eClear estimand definitions enable the evaluation of assumptions necessary for valid inference in MMM, ensuring accurate estimations and avoiding biases.\u003c/p\u003e\n"],["\u003cp\u003eDefining causal estimands and assumptions is crucial for any MMM methodology to ensure interpretable results and prevent misinterpretations or biased analysis.\u003c/p\u003e\n"],["\u003cp\u003eThese estimand definitions are universally applicable to any MMM, regardless of the specific model used, emphasizing the importance of defining them for interpretability and model appropriateness assessment.\u003c/p\u003e\n"]]],["Meridian defines primary estimands like incremental outcome, ROI, marginal ROI, and response curves using potential outcomes and counterfactuals. Defining these estimands and the assumptions needed for valid inference is crucial for any Marketing Mix Model (MMM). Failure to meet these assumptions can severely bias estimates, making the analysis unreliable. These definitions are applicable to any MMM, aiding in result interpretation and assessing model appropriateness.\n"],null,["# Causal estimands and estimation\n\nThis section describes how Meridian defines the primary estimands of\ninterest, including incremental outcome, ROI, marginal ROI, and response\ncurves. These quantities are defined using potential outcomes and\ncounterfactuals, which are the language of causal inference.\n\nWith clear estimand definitions in place, you can review the assumptions\nrequired for the MMM to provide valid inference. These assumptions help ensure\nthat the model is actually able to estimate these quantities. If assumptions are\nnot met, then estimates can be severely biased.\n\nWe recommend that you clearly define causal estimands and required assumptions\nfor any MMM methodology. If this is not done, then the model results are likely\nto be misinterpreted. Even more impactful, ignoring the required assumptions can\nrender the analysis practically nonsensical due to severe underlying bias.\n\nThe definitions in the following section don't rely on any aspects of the\nMeridian model specification. The same definitions can apply to any MMM.\nDefining the causal estimand is crucial for any MMM analysis so that the results\nare interpretable, and to help determine whether a particular model is\nappropriate for the analysis and under what assumptions."]]