De acordo com as premissas de capacidade de troca e consistência, a expectativa condicional de qualquer resultado possível \(\overset \sim Y_{g,t}^{
\left(\left\{ x_{g,t,i}^{(\ast)} \right\}\right) }\) pode ser escrita em termos de uma expectativa estimada por um modelo de regressão, em que\(x_{g,t,i}^{(\ast)}\) representa o conjunto de variáveis intervenientes: de mídia, de mídia orgânica e de tratamento não relacionadas a mídia. Para fins de demonstração, consideramos que os canais de mídia pagos e orgânicos aqui se baseiam em impressões, embora as informações a seguir também sejam válidas para canais com base em alcance e frequência.
Com base nas definições descritas em Dados de entrada, isso pode ser escrito como:
$$
\begin{align*}
\overset \sim Y_{g,t} &= u_{g,t}^{[Y]} \overset {\cdot \cdot} Y_{g,t} \\
&= u_{g,t}^{[Y]}L_{g,t}^{[Y]-1}(Y_{g,t})
\end{align*}
$$
O Meridian também aproveita o fato de a função de transformação de KPI pré-modelagem \(L_{g,t}^{[Y]}(\cdot)\) ser linear e, portanto, poder ser transmitida fora do operador de expectativa condicional. Isso resulta na igualdade a seguir, em que o resultado é uma quantidade que pode ser estimada com base em um modelo de regressão, como o do Meridian:
$$
\begin{align*}
E\left(\overset \sim Y_{g,t}^{(\left\{ x_{g,t,i}^{(\ast)} \right\})} \Big|
\bigl\{ z_{g,t,i} \bigr\} \right)
&= E\left( \overset \sim Y_{g,t} \Big|
\bigl\{x_{g,t,i}^{(\ast)}\bigr\}, \bigl\{z_{g,t,i}\bigr\} \right) \\
&= E\left( u_{g,t}^{[Y]}L_{g,t}^{[Y]-1}(Y_{g,t}) \Big|
\bigl\{ x_{g,t,i}^{(\ast)} \bigr\}, \bigl\{z_{g,t,i}\bigr\} \right) \\
&= u_{g,t}^{[Y]}L_{g,t}^{[Y]-1} E\left( Y_{g,t} \Big|
\bigl\{ x_{g,t,i}^{(\ast)} \bigr\}, \bigl\{z_{g,t,i}\bigr\} \right)
\end{align*}
$$
Assim, é possível usar a regressão para estimar o resultado incremental entre dois cenários contrafactuais \(\left\{ x_{g,t,i}^{(1)} \right\}\)e \(\left\{ x_{g,t,i}^{(0)} \right\}\):
$$
\begin{align*}
\text{IncrementalOutcome} \left( \bigl\{ x_{g,t,i}^{(1)} \bigr\},
\bigl\{ x_{g,t,i}^{(0)} \bigr\} \right)
&= E\left( \sum\limits_{g,t}\left( \overset \sim Y_{g,t}^{
\left( \left\{ x_{g,t,i}^{(1)} \right\} \right)
} - \overset \sim Y_{g,t}^{
\left( \left\{ x_{g,t,i}^{(0)} \right\} \right)
} \right) \Bigg| \bigl\{ z_{g,t,i} \bigr\} \right) \\
&= \sum\limits_{g,t}u_{g,t}^{[Y]}L_g^{[Y]-1}
\left( E\left( Y_{g,t} \Big| \bigl\{ x_{g,t,i}^{(1)} \bigr\},
\bigl\{ z_{g,t,i} \bigr\} \right)\right) -
\sum\limits_{g,t}u_{g,t}^{[Y]}L_{g,t}^{[Y]-1}
\left( E\left( Y_{g,t} \Big| \bigl\{ x_{g,t,i}^{(0)} \bigr\},
\bigl\{ z_{g,t,c} \bigr\}
\right) \right)
\end{align*}
$$
Na especificação do modelo do Meridian:
$$
\begin{align*}
E\left( Y_{g,t} \Big|
\bigl\{ x_{g,t,i}^{(\ast)} \bigr\}, \bigl\{ z_{g,t,i} \bigr\} \right) =
\mu_t &+ \tau_g + \sum\limits_{i=1}^{N_C} \gamma^{[C]}_{g,i}z_{g,t,i} \\
&+ \sum\limits_{i=1}^{N_N} \gamma^{[N]}_{g,i}x^{[N] (\ast)}_{g,t,i} \\
&+ \sum\limits_{i=1}^{N_M} \beta^{[M]}_{g,i} \text{HillAdstock} \left(
\bigl\{ x^{[M] (\ast)}_{g,t-s,i} \bigr\}^L_{s=0};\ \alpha^{[M]}_i, ec^{[M]}_i, \text{slope}^{[M]}_i
\right) \\
&+ \sum\limits_{i=1}^{N_{OM}} \beta^{[OM]}_{g,i} \text{HillAdstock} \left(
\bigl\{ x^{[OM] (\ast)}_{g,t-s,i} \bigr\}^L_{s=0};\ \alpha^{[OM]}_i, ec^{[OM]}_i, \text{slope}^{[OM]}_i
\right)
\end{align*}
$$
Essa quantidade é uma função dos parâmetros do modelo e, portanto, tem uma distribuição a posteriori que o Meridian pode criar usando o Monte Carlo via cadeias de Markov (MCMC, na sigla em inglês). O ROI, o mROI e as curvas de resposta podem ser calculados com base na definição de resultado incremental, e cada uma dessas quantidades também tem uma distribuição a posteriori.