Brooks, S. Gelman, A. Dönüşüm İzlemeye İlişkin Genel Yöntemler İterasyonlu/Yinelemeli Simülasyonlar, 1998.
Chen, A. Chan, D. Koehler, J. Wang, Y. Paz, Y., Şahin, Y. Perry, M. Google, Inc. Medya Karmasında Ücretli Arama İçin Önyargı Düzeltme Modelleme 2018.
Can, Mehmet. Bayes Temel Bilgileri: Uygulamayla kavramsal bir giriş R ve Stan'a dokunun. Michigan Üniversitesi'nde çalışıyorum. (11.09.2015).
Gelman, A. Rubin, D. Çoklu Kullanarak Yinelemeli Simülasyondan Çıkarım Adım sıraları 1992.
Yüksek lisans yaptı, Robins JM (2020). Nedensel Çıkarım: Ne? Eğer. Boca Raton: Chapman ve Hall/CRC.
Şahin, Y. Wang, Y. Paz, Y., Chan, D. Koehler, J. Google Inc. Bayesian Taşıma ve Şekil ile Medya Karması Modelleme Yöntemleri Efektler 2017.
Ng, E. Wang, Z. & Dai, A. Bayes Saati Değişken Katsayı Modeli Pazarlama Karması Modellemesi Uygulamaları, 2021.
İnci, Judea. Nedensellik. Cambridge University Press. (14.09.2009) ISBN 9781139643986.
Spline (matematik), Vikipedi.
Paz, Y., Wang, Y. Şahin, Y. Chan, D. Koehler, J. Google Inc. Coğrafi düzey Bayes Hiyerarşik Medya Karması Modelleme 2017.
Wang, Y. Şahin, Y. Paz, Y., Chan, D. Koehler, J. Google Inc. A Kategoriyi Kullanarak Medya Karması Modellerini İyileştirmeye Yönelik Hiyerarşik Bayes Yaklaşımı Veriler, 2017.
Zhang, Y. Wurm, M. Li, E. Wakim, A. Kübra, C. Fiyat, B. Liu, Y. Google Inc. Baesian ile Medya Karması Modeli Kalibrasyonu Öncekiler 2023.
Zhang, Y. Wurm, M. Wakim, A. Li, E. Liu, Y. Google Inc. Bayesian Erişim ve Sıklıkla Hiyerarşik Medya Karması Modeli Veri 2023.
Referanslar
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2024-09-05 UTC.
[null,null,["Son güncelleme tarihi: 2024-09-05 UTC."],[],["The documents cover Bayesian methods and their application in media mix modeling (MMM). Key topics include: bias-variance tradeoff; convergence monitoring for iterative simulations; causal inference; Bayesian hierarchical modeling to improve MMM with category data, reach, frequency, carryover, and shape effects; bias correction for paid search in MMM; and calibration of MMM using Bayesian priors. Splines and TensorFlow Probability are also mentioned, with general bayesian concepts. The work was carried out by researchers in different academic institutions or at google.\n"],null,[]]