新しく開設された
Discord コミュニティに参加して、リアルタイムのディスカッション、ユーザー同士のサポート、メリディアン チームとの直接の交流をお楽しみください。
前提要件
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
一般的に、回帰モデルは応答変数の条件付き期待値を推定するため、回帰には潜在的な結果という概念がありません。ただし、条件付き交換可能性と整合性という主な仮定に基づくと、次のように解釈できます。
$$
E \Biggl(
\overset \sim Y_{g,t}^{
\left(\left\{
x_{g,t,i}^{(\ast)}
\right\}\right)
} \Big| \bigl\{z_{g,t,i}\bigr\}
\Biggr) = E \Biggl(
\overset \sim Y_{g,t} \Big|
\bigl\{z_{g,t,i}\bigr\}, \big\{x_{g,t,i}^{(\ast)}\bigr\} \Biggr)
$$
主な仮定
条件付き交換可能性:
\( \overset \sim Y_{g,t}^{(\{ x_{g,t,i}^{(\ast)} \})} \)は、任意の反事実シナリオ\(\bigl\{ x_{g,t,i}^{(\ast)} \bigr\}\)の確率変数\(\bigl\{ X_{g,t,i}^{(\ast)} \bigr\}\) とは独立しています。そのため、潜在的な結果のセットは、広告主様の過去のメディア マーケティングの判断とは条件付きで独立しています。
整合性:
\(\bigl\{ X_{g,t,i}^{(\ast)} \bigr\} =
\bigl\{ x_{g,t,i}^{(\ast)} \bigr\}\)の場合\( \overset \sim Y_{g,t} = \overset \sim Y_{g,t}^{
(\{ x_{g,t,i}^{(\ast)} \})
} \) になります。つまり、広告主様の過去のメディア マーケティングと一致する反事実的シナリオを対象とした、潜在的な結果の観測済み KPI の実現です。
これらの仮定に基づいて、前述の結果が得られます。
$$
E \Biggl( \overset \sim Y_{g,t}^{
\left(\left\{ x_{g,t,i}^{\ast} \right\}\right)
} \Big| \bigl\{ z_{g,t,i} \bigr\} \Biggr)
\overset{\text{exchangeability}}{=} E \Biggl( \overset \sim Y_{g,t}^{
\left(\left\{ x_{g,t,i}^{\ast} \right\}\right)
} \Big| \bigl\{ z_{g,t,i} \bigr\},\ \bigl\{ x_{g,t,i}^{(\ast)} \bigr\} \Biggr)
\overset{\text{consistency}}{=} E \Biggl( \overset \sim Y_{g,t}\ \Big|
\bigl\{ z_{g,t,i} \bigr\},\ \bigl\{ x_{g,t,i}^{(\ast)} \bigr\}
\Biggr)
$$
整合性の仮定は非常に直感的であり、反事実が明確に定義されていないか、データで正確に表されていない場合を除き、成立します。詳細については、Hernan MA、Robins JM、(2020 年)Causal Inference: What If をご確認ください。
条件付き交換可能性の仮定は、それほど直感的ではありません。この仮定は、すべての交絡変数が測定され、コントロール配列 \(\{z_{g,t,i}\}\)に含まれている場合に成立します。交絡変数とは、観測済みのパターン群 \(\{x_{g,t,i}\}\) と結果\(\{\overset \sim y_{g,t}\}\)の両方に因果関係を持つ変数です。パターン群に対する因果効果とは、広告主様の全体的な予算レベル、チャネルごとの配分、地域ごとの配分、期間ごとの配分の効果を意味します。実際には、すべての交絡変数が測定されているかどうかを判断するのは困難です。これは純粋な仮定であり、データからこれを判断できる統計テストはありません。ただし、バックドア基準(Pearl, J.,2009 年)と呼ばれる条件を満たす因果グラフを仮定すると、条件付き交換可能性の仮定が成立するということを知っておくと役立ちます。詳細については、因果グラフをご確認ください。
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-08-04 UTC。
[null,null,["最終更新日 2025-08-04 UTC。"],[[["\u003cp\u003eRegression models can be used to estimate potential outcomes under the assumptions of conditional exchangeability and consistency.\u003c/p\u003e\n"],["\u003cp\u003eConditional exchangeability implies that potential outcomes are independent of historical media execution decisions, given confounding variables.\u003c/p\u003e\n"],["\u003cp\u003eConsistency means the observed outcome matches the potential outcome for the actual historical media execution.\u003c/p\u003e\n"],["\u003cp\u003eConfounding variables, which affect both treatment and outcome, must be measured and included for conditional exchangeability to hold.\u003c/p\u003e\n"],["\u003cp\u003eWhile there's no statistical test to guarantee conditional exchangeability, causal graphs and the backdoor criterion can help assess it.\u003c/p\u003e\n"]]],["Regression models typically lack potential outcomes, but under conditional exchangeability and consistency, we can derive a relevant result. Conditional exchangeability means potential outcomes are independent of historical media execution. Consistency dictates that observed outcomes match potential outcomes when treatment equals historical media execution. The key result is derived by first exchanging outcomes with potential outcomes, then aligning them with observed values under these assumptions. Conditional exchangeability relies on all confounders (variables affecting both treatment and outcome) being measured and can be assessed with causal graph analysis.\n"],null,["# Required assumptions\n\nGenerally speaking, there is no concept of potential outcomes in regression\nbecause regression models estimate conditional expectations of a response\nvariable. However, under the key assumptions of *conditional exchangeability*\nand *consistency*: \n$$ E \\\\Biggl( \\\\overset \\\\sim Y_{g,t}\\^{ \\\\left(\\\\left\\\\{ x_{g,t,i}\\^{(\\\\ast)} \\\\right\\\\}\\\\right) } \\\\Big\\| \\\\bigl\\\\{z_{g,t,i}\\\\bigr\\\\} \\\\Biggr) = E \\\\Biggl( \\\\overset \\\\sim Y_{g,t} \\\\Big\\| \\\\bigl\\\\{z_{g,t,i}\\\\bigr\\\\}, \\\\big\\\\{x_{g,t,i}\\^{(\\\\ast)}\\\\bigr\\\\} \\\\Biggr) $$\n\n**Key assumptions**\n\n- Conditional exchangeability:\n\n \\\\( \\\\overset \\\\sim Y_{g,t}\\^{(\\\\{ x_{g,t,i}\\^{(\\\\ast)} \\\\})} \\\\)\n is independent of the random variables\n \\\\(\\\\bigl\\\\{ X_{g,t,i}\\^{(\\\\ast)} \\\\bigr\\\\}\\\\) for any counterfactual scenario\n \\\\(\\\\bigl\\\\{ x_{g,t,i}\\^{(\\\\ast)} \\\\bigr\\\\}\\\\). So, the set of potential outcomes\n is conditionally independent of the advertiser's historical media execution\n decision.\n- Consistency:\n\n \\\\( \\\\overset \\\\sim Y_{g,t} = \\\\overset \\\\sim Y_{g,t}\\^{\n (\\\\{ x_{g,t,i}\\^{(\\\\ast)} \\\\})\n } \\\\) when \\\\(\\\\bigl\\\\{ X_{g,t,i}\\^{(\\\\ast)} \\\\bigr\\\\} =\n \\\\bigl\\\\{ x_{g,t,i}\\^{(\\\\ast)} \\\\bigr\\\\}\\\\). So, the observed KPI realization of\n the potential outcome for the counterfactual scenario matching the\n advertiser's historical media execution.\n\nUnder these assumptions, you have the previously stated result: \n$$ E \\\\Biggl( \\\\overset \\\\sim Y_{g,t}\\^{ \\\\left(\\\\left\\\\{ x_{g,t,i}\\^{\\\\ast} \\\\right\\\\}\\\\right) } \\\\Big\\| \\\\bigl\\\\{ z_{g,t,i} \\\\bigr\\\\} \\\\Biggr) \\\\overset{\\\\text{exchangeability}}{=} E \\\\Biggl( \\\\overset \\\\sim Y_{g,t}\\^{ \\\\left(\\\\left\\\\{ x_{g,t,i}\\^{\\\\ast} \\\\right\\\\}\\\\right) } \\\\Big\\| \\\\bigl\\\\{ z_{g,t,i} \\\\bigr\\\\},\\\\ \\\\bigl\\\\{ x_{g,t,i}\\^{(\\\\ast)} \\\\bigr\\\\} \\\\Biggr) \\\\overset{\\\\text{consistency}}{=} E \\\\Biggl( \\\\overset \\\\sim Y_{g,t}\\\\ \\\\Big\\| \\\\bigl\\\\{ z_{g,t,i} \\\\bigr\\\\},\\\\ \\\\bigl\\\\{ x_{g,t,i}\\^{(\\\\ast)} \\\\bigr\\\\} \\\\Biggr) $$\n\nThe consistency assumption is fairly intuitive, and holds unless the\ncounterfactual is poorly defined or is not accurately represented in the data.\nFor more information, see [Hernan MA, Robins JM, (2020) Causal Inference: What\nIf](https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/).\n\nThe conditional exchangeability assumption is a bit less intuitive. This\nassumption holds if all confounding variables are measured and included in the\ncontrol array \\\\(\\\\{z_{g,t,i}\\\\}\\\\). *Confounding variables* are anything that has\na causal effect on both the observed treatment \\\\(\\\\{x_{g,t,i}\\\\}\\\\) and outcome\n\\\\(\\\\{\\\\overset \\\\sim y_{g,t}\\\\}\\\\). A causal effect on treatment can mean an effect\nof the advertiser's overall budget level, the allocation across channels, the\nallocation across geos, or the allocation across time periods. In practice, it\nis difficult to know whether all of the confounding variables are measured\nbecause it is purely an assumption, and there is no statistical test to\ndetermine this from your data. However, it can be helpful to know that the\nconditional exchangeability assumption holds if you assume a causal graph that\nmeets a condition known as the *backdoor criterion* (Pearl, J., 2009). For more\ninformation, see [Causal graph](/meridian/docs/basics/causal-graph)."]]