日志记录

日志记录和监控可协同工作,帮助您了解和优化应用性能,以及诊断错误和系统相关问题。您应为所有 API 调用启用摘要日志,并为失败的 API 调用启用详细日志,以便在需要技术支持时提供 API 调用日志。

Google Ads API 客户端库附带内置日志记录功能。如需了解特定于平台的日志记录详情,请参阅您所选客户端库中的日志记录文档。

日志格式

Google Ads API 客户端库会为每个 API 调用生成详细日志摘要日志。详细日志包含 API 调用的所有详细信息,而摘要日志包含 API 调用的最少详细信息。显示了每种日志类型的示例,并对日志进行了截断和格式设置,以便于阅读。

摘要日志

GoogleAds.SummaryRequestLogs Warning: 1 : [2023-09-15 19:58:39Z] -
Request made: Host: , Method: /google.ads.googleads.v14.services.GoogleAdsService/SearchStream,
ClientCustomerID: 5951878031, RequestID: hELhBPNlEDd8mWYcZu7b8g,
IsFault: True, FaultMessage: Status(StatusCode="InvalidArgument",
Detail="Request contains an invalid argument.")

详细日志

GoogleAds.DetailedRequestLogs Verbose: 1 : [2023-11-02 21:09:36Z] -
---------------BEGIN API CALL---------------

Request
-------

Method Name: /google.ads.googleads.v14.services.GoogleAdsService/SearchStream
Host:
Headers: {
  "x-goog-api-client": "gl-dotnet/5.0.0 gapic/17.0.1 gax/4.2.0 grpc/2.46.3 gccl/3.0.1 pb/3.21.5",
  "developer-token": "REDACTED",
  "login-customer-id": "1234567890",
  "x-goog-request-params": "customer_id=4567890123"
}

{ "customerId": "4567890123", "query": "SELECT ad_group_criterion.type FROM
  ad_group_criterion WHERE ad_group.status IN(ENABLED, PAUSED) AND
  campaign.status IN(ENABLED, PAUSED) ", "summaryRowSetting": "NO_SUMMARY_ROW" }

Response
--------
Headers: {
  "date": "Thu, 02 Nov 2023 21:09:35 GMT",
  "alt-svc": "h3-29=\":443\"; ma=2592000"
}

{
  "results": [ {
    "adGroupCriterion": {
      "resourceName": "customers/4567890123/adGroupCriteria/456789456789~123456123467",
      "type": "KEYWORD"
    } }, {
    "adGroupCriterion": {
      "resourceName": "customers/4567890123/adGroupCriteria/456789456789~56789056788",
      "type": "KEYWORD"
    } } ],
    "fieldMask": "adGroupCriterion.type", "requestId": "VsJ4F00ew6s9heHvAJ-abw"
}
----------------END API CALL----------------

如果我没有使用客户端库,该怎么办?

如果您不使用客户端库,请实现自己的日志记录功能,以捕获出站和入站 API 调用的详细信息。您应至少记录 request-id 响应标头的值,以便根据需要与技术支持团队共享。

将日志记录到云端

您可以使用多种工具来捕获应用的日志和性能指标。例如,您可以使用 Google Cloud Logging 将性能指标记录到 Google Cloud 项目。这样,您就可以在 Google Cloud Monitoring 中设置信息中心和提醒,以便使用已记录的指标。

Cloud Logging 为所有受支持的 Google Ads API 客户端库语言(Perl 除外)提供了客户端库,因此在大多数情况下,您可以直接通过客户端库集成使用 Cloud Logging 记录日志。对于包括 Perl 在内的其他语言,Cloud Logging 还提供 REST API

您可以通过多种方式从 Google Ads API 客户端库将日志记录到 Cloud Logging 或其他工具。每种方案各有利弊,具体体现在实现时间、复杂性和性能方面。在决定要实现哪种解决方案之前,请仔细考虑这些权衡。

方案 1:从后台进程将本地日志写入云端

您可以通过修改日志记录配置,将客户端库日志写入机器上的本地文件。将日志输出到本地文件后,您可以设置守护程序来收集日志并将其发送到云端。

此方法的一个限制是,默认情况下系统不会捕获某些性能指标。客户端库日志包含请求和响应对象中的详细信息,因此除非您进行其他更改以记录这些信息,否则不会包含延迟时间指标。

方案 2:在 Compute Engine 上运行应用并安装 Ops Agent

如果您的应用在 Compute Engine 上运行,您可以通过安装 Ops Agent 将日志发送到 Google Cloud Logging。除了默认发送的指标和日志外,Ops Agent 还可以配置将应用日志发送到 Cloud Logging。

如果您的应用已在 Google Cloud 环境中运行,或者您正在考虑将应用迁移到 Google Cloud,不妨考虑此选项。

选项 3:在应用代码中实现日志记录

您可以通过以下两种方式之一直接从应用代码进行日志记录:

  1. 在代码中的每个适用位置中添加指标计算和日志语句。对于较小的代码库,此选项更可行,因为此类更改的范围和维护成本会非常低。

  2. 实现日志记录接口。如果应用逻辑可以抽象化,以便应用的不同部分从同一基类继承,则可以在该基类中实现日志记录逻辑。与在整个应用代码中添加日志语句相比,此选项通常更为首选,因为它更易于维护和扩缩。对于较大的代码库,此解决方案的可维护性和可扩缩性尤为重要。

此方法的一个限制是,应用代码无法提供完整的请求和响应日志。您可以通过 gRPC 拦截器访问完整的请求和响应对象;内置客户端库日志记录就是通过这种方式获取请求和响应日志的。如果发生错误,异常对象中可能会包含其他信息,但应用逻辑中的成功响应会提供更少的详细信息。例如,在大多数情况下,您无法通过 Google Ads API 响应对象访问成功请求的请求 ID。

方案 4:实现自定义 gRPC 日志记录拦截器

gRPC 支持一元和流式拦截器,它们可以在请求和响应对象在客户端和服务器之间传递时访问这些对象。Google Ads API 客户端库使用 gRPC 拦截器提供内置日志记录支持。同样,您可以实现自定义 gRPC 拦截器来访问请求和响应对象,提取信息以进行日志记录和监控,并将这些数据写入您选择的位置。

与此处介绍的其他一些解决方案不同,通过实现自定义 gRPC 拦截器,您可以灵活地捕获每个请求的请求和响应对象,并实现其他逻辑来捕获请求的详细信息。例如,您可以通过在自定义拦截器本身中实现性能时间逻辑来计算请求的经过时间,然后将该指标记录到 Google Cloud Logging,以便在 Google Cloud Monitoring 中进行延迟时间监控。

Python 中的自定义 Google Cloud Logging 拦截器

为了演示此解决方案,我们在 Python 中编写了一个自定义日志记录拦截器示例。系统会创建自定义拦截器并将其传递给服务客户端。然后,它会访问在每次服务方法调用时传递的请求和响应对象,处理这些对象中的数据,并将数据发送到 Google Cloud Logging。

除了来自请求和响应对象的数据之外,该示例还实现了一些其他逻辑,用于捕获请求的经过时间以及一些其他对监控有用的元数据,例如请求是否成功。如需详细了解这些信息在监控方面的一般用途,以及在将 Google Cloud Logging 与 Google Cloud Monitoring 结合使用时的具体用途,请参阅监控指南

# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A custom gRPC Interceptor that logs requests and responses to Cloud Logging.

The custom interceptor object is passed into the get_service method of the
GoogleAdsClient. It intercepts requests and responses, parses them into a
human readable structure and logs them using the logging service instantiated
within the class (in this case, a Cloud Logging client).
"""

import logging
import time

from google.cloud import logging
from grpc import UnaryUnaryClientInterceptor, UnaryStreamClientInterceptor

from google.ads.googleads.interceptors import LoggingInterceptor, mask_message


class CloudLoggingInterceptor(LoggingInterceptor):
    """An interceptor that logs rpc request and response details to Google Cloud Logging.

    This class inherits logic from the LoggingInterceptor, which simplifies the
    implementation here. Some logic is required here in order to make the
    underlying logic work -- comments make note of this where applicable.
    NOTE: Inheriting from the LoggingInterceptor class could yield unexpected side
    effects. For example, if the LoggingInterceptor class is updated, this class would
    inherit the updated logic, which could affect its functionality. One option to avoid
    this is to inherit from the Interceptor class instead, and selectively copy whatever
    logic is needed from the LoggingInterceptor class."""

    def __init__(self, api_version):
        """Initializer for the CloudLoggingInterceptor.

        Args:
            api_version: a str of the API version of the request.
        """
        super().__init__(logger=None, api_version=api_version)
        # Instantiate the Cloud Logging client.
        logging_client = logging.Client()
        self.logger = logging_client.logger("cloud_logging")

    def log_successful_request(
        self,
        method,
        customer_id,
        metadata_json,
        request_id,
        request,
        trailing_metadata_json,
        response,
    ):
        """Handles logging of a successful request.

        Args:
            method: The method of the request.
            customer_id: The customer ID associated with the request.
            metadata_json: A JSON str of initial_metadata.
            request_id: A unique ID for the request provided in the response.
            request: An instance of a request proto message.
            trailing_metadata_json: A JSON str of trailing_metadata.
            response: A grpc.Call/grpc.Future instance.
        """
        # Retrieve and mask the RPC result from the response future.
        # This method is available from the LoggingInterceptor class.
        # Ensure self._cache is set in order for this to work.
        # The response result could contain up to 10,000 rows of data,
        # so consider truncating this value before logging it, to save
        # on data storage costs and maintain readability.
        result = self.retrieve_and_mask_result(response)

        # elapsed_ms is the approximate elapsed time of the RPC, in milliseconds.
        # There are different ways to define and measure elapsed time, so use
        # whatever approach makes sense for your monitoring purposes.
        # rpc_start and rpc_end are set in the intercept_unary_* methods below.
        elapsed_ms = (self.rpc_end - self.rpc_start) * 1000

        debug_log = {
            "method": method,
            "host": metadata_json,
            "request_id": request_id,
            "request": str(request),
            "headers": trailing_metadata_json,
            "response": str(result),
            "is_fault": False,
            "elapsed_ms": elapsed_ms,
        }
        self.logger.log_struct(debug_log, severity="DEBUG")

        info_log = {
            "customer_id": customer_id,
            "method": method,
            "request_id": request_id,
            "is_fault": False,
            # Available from the Interceptor class.
            "api_version": self._api_version,
        }
        self.logger.log_struct(info_log, severity="INFO")

    def log_failed_request(
        self,
        method,
        customer_id,
        metadata_json,
        request_id,
        request,
        trailing_metadata_json,
        response,
    ):
        """Handles logging of a failed request.

        Args:
            method: The method of the request.
            customer_id: The customer ID associated with the request.
            metadata_json: A JSON str of initial_metadata.
            request_id: A unique ID for the request provided in the response.
            request: An instance of a request proto message.
            trailing_metadata_json: A JSON str of trailing_metadata.
            response: A JSON str of the response message.
        """
        exception = self._get_error_from_response(response)
        exception_str = self._parse_exception_to_str(exception)
        fault_message = self._get_fault_message(exception)

        info_log = {
            "method": method,
            "endpoint": self.endpoint,
            "host": metadata_json,
            "request_id": request_id,
            "request": str(request),
            "headers": trailing_metadata_json,
            "exception": exception_str,
            "is_fault": True,
        }
        self.logger.log_struct(info_log, severity="INFO")

        error_log = {
            "method": method,
            "endpoint": self.endpoint,
            "request_id": request_id,
            "customer_id": customer_id,
            "is_fault": True,
            "fault_message": fault_message,
        }
        self.logger.log_struct(error_log, severity="ERROR")

    def intercept_unary_unary(self, continuation, client_call_details, request):
        """Intercepts and logs API interactions.

        Overrides abstract method defined in grpc.UnaryUnaryClientInterceptor.

        Args:
            continuation: a function to continue the request process.
            client_call_details: a grpc._interceptor._ClientCallDetails
                instance containing request metadata.
            request: a SearchGoogleAdsRequest or SearchGoogleAdsStreamRequest
                message class instance.

        Returns:
            A grpc.Call/grpc.Future instance representing a service response.
        """
        # Set the rpc_end value to current time when RPC completes.
        def update_rpc_end(response_future):
            self.rpc_end = time.perf_counter()

        # Capture precise clock time to later calculate approximate elapsed
        # time of the RPC.
        self.rpc_start = time.perf_counter()

        # The below call is REQUIRED.
        response = continuation(client_call_details, request)

        response.add_done_callback(update_rpc_end)

        self.log_request(client_call_details, request, response)

        # The below return is REQUIRED.
        return response

    def intercept_unary_stream(
        self, continuation, client_call_details, request
    ):
        """Intercepts and logs API interactions for Unary-Stream requests.

        Overrides abstract method defined in grpc.UnaryStreamClientInterceptor.

        Args:
            continuation: a function to continue the request process.
            client_call_details: a grpc._interceptor._ClientCallDetails
                instance containing request metadata.
            request: a SearchGoogleAdsRequest or SearchGoogleAdsStreamRequest
                message class instance.

        Returns:
            A grpc.Call/grpc.Future instance representing a service response.
        """

        def on_rpc_complete(response_future):
            self.rpc_end = time.perf_counter()
            self.log_request(client_call_details, request, response_future)

        # Capture precise clock time to later calculate approximate elapsed
        # time of the RPC.
        self.rpc_start = time.perf_counter()

        # The below call is REQUIRED.
        response = continuation(client_call_details, request)

        # Set self._cache to the cache on the response wrapper in order to
        # access the streaming logs. This is REQUIRED in order to log streaming
        # requests.
        self._cache = response.get_cache()

        response.add_done_callback(on_rpc_complete)

        # The below return is REQUIRED.
        return response