You can export images from Earth Engine in GeoTIFF or TFRecord format. See Configuration Parameters for more output options.
Example Setup
Start by defining the image data that will be exported:
Code Editor (JavaScript)
// Load a landsat image and select three bands. var landsat = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_123032_20140515') .select(['B4', 'B3', 'B2']); // Create a geometry representing an export region. var geometry = ee.Geometry.Rectangle([116.2621, 39.8412, 116.4849, 40.01236]);
import ee import geemap.core as geemap
Colab (Python)
# Load a landsat image and select three bands. landsat = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_123032_20140515').select( ['B4', 'B3', 'B2'] ) # Create a geometry representing an export region. geometry = ee.Geometry.Rectangle([116.2621, 39.8412, 116.4849, 40.01236])
Next define the projection parameters that will be used in the
following exports. We use the crs
parameter to specify the coordinate system,
and the crsTransform
parameter to precisely specify the pixel grid. The
crsTransform
parameter is a list of parameters from an affine transformation
matrix in row-major order
[xScale, xShearing, xTranslation, yShearing, yScale, yTranslation]
. An
image's origin is defined by the xTranslation
and yTranslation
values, and
the image's pixel size is defined by the xScale
and yScale
values. See
examples of affine
matrices.
Code Editor (JavaScript)
// Retrieve the projection information from a band of the original image. // Call getInfo() on the projection to request a client-side object containing // the crs and transform information needed for the client-side Export function. var projection = landsat.select('B2').projection().getInfo();
import ee import geemap.core as geemap
Colab (Python)
# Retrieve the projection information from a band of the original image. # Call getInfo() on the projection to request a client-side object containing # the crs and transform information needed for the client-side Export function. projection = landsat.select('B2').projection().getInfo()
Setting scale
As a shortcut, you can specify a scale
parameter and Earth Engine will
calculate a crsTransform
parameter for you. However, simply setting the scale
of an image does not specify the origin of the projection, and may result in an
image that is shifted relative to another image with the same pixel size!
The reason for the potential shift is that the scale
parameter is used to
populate the xScale
and yScale
values of the crsTransform
, but the
xTranslation
and yTranslation
values are calculated so that if they are
divided by the corresponding xScale
and yScale
values the remainder will be
zero. These parameters specify a pixel grid where the projection's origin is at
the corner of a pixel. This convention differs from the translation parameters
used by some data providers, which use grids that are offset from the
projection's origin. For example, Landsat images provided by USGS use
translation parameters that are offset by a 1/2 pixel from the projection's
origin (15m offset for the 30m bands) while Sentinel-2 images provided by ESA
use translation parameters that are aligned with the projection's origin. If
the crsTransform
specified in an export do not match the crsTransform
of the
original image, the output pixels will be resampled (using nearest neighbor by
default), which will make the resulting image be shifted relative to the
original image.
To sum up, if you need to match the exported image's pixels to a specific
image, make sure to use the crs
and crsTransform
parameters for full control
of the grid.
to Drive
To export an image to your Drive account, use Export.image.toDrive()
. For
example, to export portions of a Landsat image, define a region to export, then
call Export.image.toDrive()
:
Code Editor (JavaScript)
// Export the image, specifying the CRS, transform, and region. Export.image.toDrive({ image: landsat, description: 'imageToDriveExample_transform', crs: projection.crs, crsTransform: projection.transform, region: geometry });
import ee import geemap.core as geemap
Colab (Python)
# Export the image, specifying the CRS, transform, and region. task = ee.batch.Export.image.toDrive( image=landsat, description='imageToDriveExample_transform', crs=projection['crs'], crsTransform=projection['transform'], region=geometry, ) task.start()
When this code is run, an export task will be created in the Code Editor
Tasks tab. Click the Run button next to the task to start it. (Learn
more about the Task Manager from the Code Editor
section). The image will be created in your Drive account
with the specified fileFormat
.
to Cloud Storage
To export an image to a Google Cloud Storage bucket, use
Export.image.toCloudStorage()
. To export the Landsat image in the previous
example to Cloud Storage instead of Drive, use:
Code Editor (JavaScript)
// Export the image to Cloud Storage. Export.image.toCloudStorage({ image: landsat, description: 'imageToCloudExample', bucket: 'your-bucket-name', fileNamePrefix: 'exampleExport', crs: projection.crs, crsTransform: projection.transform, region: geometry });
import ee import geemap.core as geemap
Colab (Python)
# Export the image to Cloud Storage. task = ee.batch.Export.image.toCloudStorage( image=landsat, description='imageToCloudExample', bucket='your-bucket-name', fileNamePrefix='exampleExport', crs=projection['crs'], crsTransform=projection['transform'], region=geometry, ) task.start()
As with exports to Drive, start the export from the Tasks tab. The Cloud Storage bucket location can affect performance and storage costs, see the FAQ entry on location considerations for more information.
to Asset
To export an image to an asset in your Earth Engine assets folder, use
Export.image.toAsset()
. To manage your Earth Engine assets, or check how much
of your storage quota is in use, use the Asset Manager. The
following example illustrates exporting portions of a Landsat image using
different pyramiding policies for the same band. The pyramiding policy indicates
how Earth Engine computes lower-resolution versions of the asset. Learn more
about how Earth Engine handles multiple resolutions in the scale doc.
Code Editor (JavaScript)
// Get band 4 from the Landsat image, copy it. var band4 = landsat.select('B4').rename('b4_mean') .addBands(landsat.select('B4').rename('b4_sample')) .addBands(landsat.select('B4').rename('b4_max')); // Export the image to an Earth Engine asset. Export.image.toAsset({ image: band4, description: 'imageToAssetExample', assetId: 'exampleExport', crs: projection.crs, crsTransform: projection.transform, region: geometry, pyramidingPolicy: { 'b4_mean': 'mean', 'b4_sample': 'sample', 'b4_max': 'max' } });
import ee import geemap.core as geemap
Colab (Python)
# Get band 4 from the Landsat image, copy it. band_4 = ( landsat.select('B4') .rename('b4_mean') .addBands(landsat.select('B4').rename('b4_sample')) .addBands(landsat.select('B4').rename('b4_max')) ) # Export the image to an Earth Engine asset. task = ee.batch.Export.image.toAsset( image=band_4, description='imageToAssetExample', assetId='projects/your-project/assets/exampleExport', crs=projection['crs'], crsTransform=projection['transform'], region=geometry, pyramidingPolicy={ 'b4_mean': 'mean', 'b4_sample': 'sample', 'b4_max': 'max', }, ) task.start()
You can provide a default pyramiding policy for every band that isn't
explicitly specified by using the '.default'
key. You may also pass in just
the '.default'
key. For example, to make all bands default to the 'sample'
pyramiding policy, use {'.default': 'sample'}
.
Configuration parameters
Observe that the dictionary of configuration parameters passed to Export.image
includes scale
(in meters) and the export region as an ee.Geometry
. The
exported image will cover the specified region with pixels at the specified
scale. If not explicitly specified, the CRS of the output will be taken from the
first band of the image to be exported.
You may also specify the dimensions
, crs
and/or crsTransform
of the
exported image. See the glossary for more information
on crs
and crsTransform
. For example, to get a block of pixels precisely
aligned to another data source, specify dimensions
, crs
and crsTransform
.
To get a block of pixels of predefined size (for example a 256x256 thumbnail
image) that covers a region, specify dimensions
and region
.
You can specify image output format (if the destination is not toAsset()
) with
the fileFormat
parameter ('GeoTIFF'
by default).
formatOptions
parameter
Other configuration options are set with the formatOptions
parameter, which
should be a dictionary keyed by other format options, specific to each
fileFormat
as described below.
GeoTIFF
Cloud optimized GeoTIFF
To export a cloud optimized GeoTIFF, pass a JavaScript
literal for formatOptions
in which the cloudOptimized
key is set to
true. Continuing the previous example:
Code Editor (JavaScript)
// Export a cloud-optimized GeoTIFF. Export.image.toDrive({ image: landsat, description: 'imageToCOGeoTiffExample', crs: projection.crs, crsTransform: projection.transform, region: geometry, fileFormat: 'GeoTIFF', formatOptions: { cloudOptimized: true } });
import ee import geemap.core as geemap
Colab (Python)
# Export a cloud-optimized GeoTIFF. task = ee.batch.Export.image.toDrive( image=landsat, description='imageToCOGeoTiffExample', crs=projection['crs'], crsTransform=projection['transform'], region=geometry, fileFormat='GeoTIFF', formatOptions={'cloudOptimized': True}, ) task.start()
Cloud optimized GeoTIFFs can be reloaded from Cloud Storage into an Image
. See
the Image
overview docs for
details.
Nodata
Specify the GeoTIFF nodata value using the noData
key within the
formatOptions
parameter. For example:
Code Editor (JavaScript)
// Set a nodata value and replace masked pixels around the image edge with it. var noDataVal = -9999; landsat = landsat.unmask(noDataVal); Export.image.toDrive({ image: landsat, description: 'imageNoDataExample', crs: projection.crs, scale: 2000, // large scale for minimal demo region: landsat.geometry(), // full image bounds fileFormat: 'GeoTIFF', formatOptions: { noData: noDataVal, } });
import ee import geemap.core as geemap
Colab (Python)
# Set a nodata value and replace masked pixels around the image edge with it. no_data_val = -9999 landsat = landsat.unmask(no_data_val) task = ee.batch.Export.image.toDrive( image=landsat, description='imageNoDataExample', crs=projection['crs'], scale=2000, # large scale for minimal demo region=landsat.geometry(), # full image bounds fileFormat='GeoTIFF', formatOptions={'noData': no_data_val}, ) task.start()
Note that the nodata value should be inside the valid range for the image's
PixelType
. You can check PixelType
by
printing image metadata and looking at
the first band's data_type
property. You can also set the image'sPixelType
by casting the data to a specific type using image methods toShort()
or
toInt()
, for example.
TFRecord
See the TFRecord data format page.
maxPixels
The maxPixels
parameter is intended to prevent very large exports from
inadvertently being created. If the default value is too low for your intended
output image, you can increase maxPixels
. For example:
Export.image.toDrive({ image: landsat, description: 'maxPixelsExample', crs: projection.crs, crsTransform: projection.transform, region: geometry, maxPixels: 1e9 });
Large file exports
If the output image is large, it will be exported as multiple files. If you are
exporting to GeoTIFF(s), the image is split into tiles. The filename of each
tile will be in the form baseFilename-yMin-xMin
where xMin
and yMin
are
the coordinates of each tile within the overall bounding box of the exported
image.
If you are exporting to TFRecord, the files will be appended by -00000
,
-00001
,... -0000N
for N+1 files. Maintaining this order is important if
you intend to perform inference on the files and upload the predictions back to
Earth Engine as an image. See uploading images as TFRecord
files for details.
Exporting images as they appear in the Code Editor
To export imagery as rendered on screen in Earth Engine, create visualization
images as demonstrated in the Visualization
images and the Compositing and
Mosaicking sections. Since the Code Editor uses the
'EPSG:3857'
CRS, specify a CRS of 'EPSG:3857'
in the export to get an image
in the same projection as that displayed in the Code Editor map. See the
section on configuring image exports for
details on specifying the resolution and coordinate system of the output.