De forma predeterminada, los reductores aplicados a las imágenes ponderan las entradas según el valor de la máscara.
Esto es relevante en el contexto de los píxeles fraccionarios creados a través de operaciones como clip()
. Para ajustar este comportamiento, llama a unweighted()
en el reducer. El uso de un reductor sin ponderación obliga a que todos los píxeles de la región tengan el mismo peso. En el siguiente ejemplo, se ilustra cómo la ponderación de píxeles puede afectar el resultado del reducer:
Editor de código (JavaScript)
// Load a Landsat 8 input image. var image = ee.Image('LANDSAT/LC08/C02/T1/LC08_044034_20140318'); // Create an arbitrary region. var geometry = ee.Geometry.Rectangle(-122.496, 37.532, -121.554, 37.538); // Make an NDWI image. It will have one band named 'nd'. var ndwi = image.normalizedDifference(['B3', 'B5']); // Compute the weighted mean of the NDWI image clipped to the region. var weighted = ndwi.clip(geometry) .reduceRegion({ reducer: ee.Reducer.mean(), geometry: geometry, scale: 30}) .get('nd'); // Compute the UN-weighted mean of the NDWI image clipped to the region. var unweighted = ndwi.clip(geometry) .reduceRegion({ reducer: ee.Reducer.mean().unweighted(), geometry: geometry, scale: 30}) .get('nd'); // Observe the difference between weighted and unweighted reductions. print('weighted:', weighted); print('unweighted', unweighted);
import ee import geemap.core as geemap
Colab (Python)
# Load a Landsat 8 input image. image = ee.Image('LANDSAT/LC08/C02/T1/LC08_044034_20140318') # Create an arbitrary region. geometry = ee.Geometry.Rectangle(-122.496, 37.532, -121.554, 37.538) # Make an NDWI image. It will have one band named 'nd'. ndwi = image.normalizedDifference(['B3', 'B5']) # Compute the weighted mean of the NDWI image clipped to the region. weighted = ( ndwi.clip(geometry) .reduceRegion(reducer=ee.Reducer.mean(), geometry=geometry, scale=30) .get('nd') ) # Compute the UN-weighted mean of the NDWI image clipped to the region. unweighted = ( ndwi.clip(geometry) .reduceRegion( reducer=ee.Reducer.mean().unweighted(), geometry=geometry, scale=30 ) .get('nd') ) # Observe the difference between weighted and unweighted reductions. display('weighted:', weighted) display('unweighted', unweighted)
La diferencia en los resultados se debe a que los píxeles en el borde de la región reciben un peso de uno como resultado de llamar a unweighted()
en el reductor.
Para obtener un resultado ponderado de forma explícita, es preferible establecer los pesos de forma explícita con splitWeights()
llamado al reductor. Un reductor modificado por splitWeights()
toma dos entradas, en las que la segunda entrada es el peso. En el siguiente ejemplo, se ilustra splitWeights()
mediante el cálculo del índice normalizado de vegetación (NDVI) ponderado en una región, con los pesos dados por la puntuación de nubes (cuanto más nublado, menor es el peso):
Editor de código (JavaScript)
// Load an input Landsat 8 image. var image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_186059_20130419'); // Compute cloud score and reverse it such that the highest // weight (100) is for the least cloudy pixels. var cloudWeight = ee.Image(100).subtract( ee.Algorithms.Landsat.simpleCloudScore(image).select(['cloud'])); // Compute NDVI and add the cloud weight band. var ndvi = image.normalizedDifference(['B5', 'B4']).addBands(cloudWeight); // Define an arbitrary region in a cloudy area. var region = ee.Geometry.Rectangle(9.9069, 0.5981, 10.5, 0.9757); // Use a mean reducer. var reducer = ee.Reducer.mean(); // Compute the unweighted mean. var unweighted = ndvi.select(['nd']).reduceRegion(reducer, region, 30); // compute mean weighted by cloudiness. var weighted = ndvi.reduceRegion(reducer.splitWeights(), region, 30); // Observe the difference as a result of weighting by cloudiness. print('unweighted:', unweighted); print('weighted:', weighted);
import ee import geemap.core as geemap
Colab (Python)
# Load an input Landsat 8 image. image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_186059_20130419') # Compute cloud score and reverse it such that the highest # weight (100) is for the least cloudy pixels. cloud_weight = ee.Image(100).subtract( ee.Algorithms.Landsat.simpleCloudScore(image).select(['cloud']) ) # Compute NDVI and add the cloud weight band. ndvi = image.normalizedDifference(['B5', 'B4']).addBands(cloud_weight) # Define an arbitrary region in a cloudy area. region = ee.Geometry.Rectangle(9.9069, 0.5981, 10.5, 0.9757) # Use a mean reducer. reducer = ee.Reducer.mean() # Compute the unweighted mean. unweighted = ndvi.select(['nd']).reduceRegion(reducer, region, 30) # compute mean weighted by cloudiness. weighted = ndvi.reduceRegion(reducer.splitWeights(), region, 30) # Observe the difference as a result of weighting by cloudiness. display('unweighted:', unweighted) display('weighted:', weighted)
Observa que cloudWeight
se debe agregar como una banda antes de llamar a reduceRegion()
. El resultado indica que el NDVI medio estimado es más alto como resultado de la disminución del peso de los píxeles nublados.