Methods for getting information from feature collection metadata are the same as those for image collections. See the ImageCollection Information and Metadata section for details.
Metadata aggregation
You can use the aggregation shortcuts to count the number of features or summarize an attribute:
Code Editor (JavaScript)
// Load watersheds from a data table. var sheds = ee.FeatureCollection('USGS/WBD/2017/HUC06') // Filter to the continental US. .filterBounds(ee.Geometry.Rectangle(-127.18, 19.39, -62.75, 51.29)) // Convert 'areasqkm' property from string to number. .map(function(feature){ var num = ee.Number.parse(feature.get('areasqkm')); return feature.set('areasqkm', num); }); // Display the table and print its first element. Map.addLayer(sheds, {}, 'watersheds'); print('First watershed', sheds.first()); // Print the number of watersheds. print('Count:', sheds.size()); // Print stats for an area property. print('Area stats:', sheds.aggregate_stats('areasqkm'));
import ee import geemap.core as geemap
Colab (Python)
# Load watersheds from a data table. sheds = ( ee.FeatureCollection('USGS/WBD/2017/HUC06') # Filter to the continental US. .filterBounds(ee.Geometry.Rectangle(-127.18, 19.39, -62.75, 51.29)) # Convert 'areasqkm' property from string to number. .map( lambda feature: feature.set( 'areasqkm', ee.Number.parse(feature.get('areasqkm')) ) ) ) # Display the table and print its first element. m = geemap.Map() m.add_layer(sheds, {}, 'watersheds') display(m) display('First watershed:', sheds.first()) # Print the number of watersheds. display('Count:', sheds.size()) # Print stats for an area property. display('Area stats:', sheds.aggregate_stats('areasqkm'))
Column information
Knowing the names and dataypes of FeatureCollection
columns can be helpful (e.g., filtering a
collection by metadata). The following example prints column names
and datatypes for a collection of point features representing protected areas.
Code Editor (JavaScript)
// Import a protected areas point feature collection. var wdpa = ee.FeatureCollection("WCMC/WDPA/current/points"); // Define a function to print metadata column names and datatypes. This function // is intended to be applied by the `evaluate` method which provides the // function a client-side dictionary allowing the 'columns' object of the // feature collection metadata to be subset by dot notation or bracket notation // (`tableMetadata['columns']`). function getCols(tableMetadata) { print(tableMetadata.columns); } // Fetch collection metadata (`.limit(0)`) and apply the // previously defined function using `evaluate()`. The printed object is a // dictionary where keys are column names and values are datatypes. wdpa.limit(0).evaluate(getCols);
import ee import geemap.core as geemap
Colab (Python)
# Import a protected areas point feature collection. wdpa = ee.FeatureCollection('WCMC/WDPA/current/points') # Fetch collection metadata (`.limit(0)`). The printed object is a # dictionary where keys are column names and values are datatypes. wdpa.limit(0).getInfo()['columns']
For more general purpose FeatureCollection
aggregation tools, see the
Reducing a FeatureCollection page.