虽然 map()
会对集合中的每张图片应用函数,但该函数会独立访问集合中的每张图片。例如,假设您要计算时间序列在时间 t 时的累积异常值 (At)。如需获取以 At = f(Imaget, At-1) 的形式递归定义的系列,映射不起作用,因为函数 (f) 取决于上一个结果 (At-1)。例如,假设您要计算一系列相对于基准的累积常态化差值植生指标 (NDVI) 异常图像。设 A0 = 0 且 f(Imaget, At-1) = Imaget + At-1,其中 At-1 是截至时间 t-1 的累计异常,Imaget 是时间 t 的异常。使用 imageCollection.iterate()
创建此递归定义的 ImageCollection
。在以下示例中,accumulate()
函数接受两个参数:集合中的图片,以及所有之前输出的列表。每次调用 iterate()
时,异常都会被添加到累计和中,结果会添加到列表中。最终结果会传递给 ImageCollection
构造函数,以获取新的图片序列:
Code Editor (JavaScript)
// Load MODIS EVI imagery. var collection = ee.ImageCollection('MODIS/006/MYD13A1').select('EVI'); // Define reference conditions from the first 10 years of data. var reference = collection.filterDate('2001-01-01', '2010-12-31') // Sort chronologically in descending order. .sort('system:time_start', false); // Compute the mean of the first 10 years. var mean = reference.mean(); // Compute anomalies by subtracting the 2001-2010 mean from each image in a // collection of 2011-2014 images. Copy the date metadata over to the // computed anomaly images in the new collection. var series = collection.filterDate('2011-01-01', '2014-12-31').map(function(image) { return image.subtract(mean).set('system:time_start', image.get('system:time_start')); }); // Display cumulative anomalies. Map.setCenter(-100.811, 40.2, 5); Map.addLayer(series.sum(), {min: -60000, max: 60000, palette: ['FF0000', '000000', '00FF00']}, 'EVI anomaly'); // Get the timestamp from the most recent image in the reference collection. var time0 = reference.first().get('system:time_start'); // Use imageCollection.iterate() to make a collection of cumulative anomaly over time. // The initial value for iterate() is a list of anomaly images already processed. // The first anomaly image in the list is just 0, with the time0 timestamp. var first = ee.List([ // Rename the first band 'EVI'. ee.Image(0).set('system:time_start', time0).select([0], ['EVI']) ]); // This is a function to pass to Iterate(). // As anomaly images are computed, add them to the list. var accumulate = function(image, list) { // Get the latest cumulative anomaly image from the end of the list with // get(-1). Since the type of the list argument to the function is unknown, // it needs to be cast to a List. Since the return type of get() is unknown, // cast it to Image. var previous = ee.Image(ee.List(list).get(-1)); // Add the current anomaly to make a new cumulative anomaly image. var added = image.add(previous) // Propagate metadata to the new image. .set('system:time_start', image.get('system:time_start')); // Return the list with the cumulative anomaly inserted. return ee.List(list).add(added); }; // Create an ImageCollection of cumulative anomaly images by iterating. // Since the return type of iterate is unknown, it needs to be cast to a List. var cumulative = ee.ImageCollection(ee.List(series.iterate(accumulate, first))); // Predefine the chart titles. var title = { title: 'Cumulative EVI anomaly over time', hAxis: {title: 'Time'}, vAxis: {title: 'Cumulative EVI anomaly'}, }; // Chart some interesting locations. var pt1 = ee.Geometry.Point(-65.544, -4.894); print('Amazon rainforest:', ui.Chart.image.series( cumulative, pt1, ee.Reducer.first(), 500).setOptions(title)); var pt2 = ee.Geometry.Point(116.4647, 40.1054); print('Beijing urbanization:', ui.Chart.image.series( cumulative, pt2, ee.Reducer.first(), 500).setOptions(title)); var pt3 = ee.Geometry.Point(-110.3412, 34.1982); print('Arizona forest disturbance and recovery:', ui.Chart.image.series( cumulative, pt3, ee.Reducer.first(), 500).setOptions(title));
import ee import geemap.core as geemap
Colab (Python)
import altair as alt # Load MODIS EVI imagery. collection = ee.ImageCollection('MODIS/006/MYD13A1').select('EVI') # Define reference conditions from the first 10 years of data. reference = collection.filterDate('2001-01-01', '2010-12-31').sort( # Sort chronologically in descending order. 'system:time_start', False, ) # Compute the mean of the first 10 years. mean = reference.mean() # Compute anomalies by subtracting the 2001-2010 mean from each image in a # collection of 2011-2014 images. Copy the date metadata over to the # computed anomaly images in the new collection. series = collection.filterDate('2011-01-01', '2014-12-31').map( lambda image: image.subtract(mean).set( 'system:time_start', image.get('system:time_start') ) ) # Display cumulative anomalies. m = geemap.Map() m.set_center(-100.811, 40.2, 5) m.add_layer( series.sum(), {'min': -60000, 'max': 60000, 'palette': ['FF0000', '000000', '00FF00']}, 'EVI anomaly', ) display(m) # Get the timestamp from the most recent image in the reference collection. time_0 = reference.first().get('system:time_start') # Use imageCollection.iterate() to make a collection of cumulative anomaly over time. # The initial value for iterate() is a list of anomaly images already processed. # The first anomaly image in the list is just 0, with the time_0 timestamp. first = ee.List([ # Rename the first band 'EVI'. ee.Image(0) .set('system:time_start', time_0) .select([0], ['EVI']) ]) # This is a function to pass to Iterate(). # As anomaly images are computed, add them to the list. def accumulate(image, list): # Get the latest cumulative anomaly image from the end of the list with # get(-1). Since the type of the list argument to the function is unknown, # it needs to be cast to a List. Since the return type of get() is unknown, # cast it to Image. previous = ee.Image(ee.List(list).get(-1)) # Add the current anomaly to make a new cumulative anomaly image. added = image.add(previous).set( # Propagate metadata to the new image. 'system:time_start', image.get('system:time_start'), ) # Return the list with the cumulative anomaly inserted. return ee.List(list).add(added) # Create an ImageCollection of cumulative anomaly images by iterating. # Since the return type of iterate is unknown, it needs to be cast to a List. cumulative = ee.ImageCollection(ee.List(series.iterate(accumulate, first))) # Predefine the chart titles. title = 'Cumulative EVI anomaly over time' # Chart some interesting locations. def display_chart(region, collection): reduced = ( collection.filterBounds(region) .sort('system:time_start') .map( lambda image: ee.Feature( None, image.reduceRegion(ee.Reducer.first(), region, 500).set( 'time', image.get('system:time_start') ), ) ) ) reduced_dataframe = ee.data.computeFeatures( {'expression': reduced, 'fileFormat': 'PANDAS_DATAFRAME'} ) alt.Chart(reduced_dataframe).mark_line().encode( alt.X('time:T').title('Time'), alt.Y('EVI:Q').title('Cumulative EVI anomaly'), ).properties(title=title).display() pt_1 = ee.Geometry.Point(-65.544, -4.894) display('Amazon rainforest:') display_chart(pt_1, cumulative) pt_2 = ee.Geometry.Point(116.4647, 40.1054) display('Beijing urbanization:') display_chart(pt_2, cumulative) pt_3 = ee.Geometry.Point(-110.3412, 34.1982) display('Arizona forest disturbance and recovery:') display_chart(pt_3, cumulative)
绘制这些序列的图表可指明 NDVI 相对于之前的干扰是否趋于稳定,或者 NDVI 是否呈现向新状态发展的趋势。如需详细了解 Earth Engine 中的图表,请参阅“图表”部分。
迭代函数可以执行的操作受到限制。具体而言,它无法修改函数外的变量;无法输出任何内容;无法使用 JavaScript“if”或“for”语句。您要收集的任何结果或要保留到下一次迭代的中间信息都必须包含在函数的返回值中。您可以使用 `ee.Algorithms.If()` 执行条件运算。