Announcement: All noncommercial projects registered to use Earth Engine before
April 15, 2025 must
verify noncommercial eligibility to maintain Earth Engine access.
ee.data.getPixels (Python only)
Stay organized with collections
Save and categorize content based on your preferences.
Fetches pixels from an image asset.
Returns:
The pixels as raw image data.
Usage | Returns |
ee.data.getPixels(params) | Object|Value |
Argument | Type | Details |
params | Object | An object containing parameters with the following possible values:
assetId - The asset ID for which to get pixels. Must be an image asset.
fileFormat - The resulting file format. Defaults to png. See
ImageFileFormat
for the available formats. There are additional formats that convert
the downloaded object to a Python data object. These include:
NUMPY_NDARRAY , which converts to a structured NumPy
array.
grid - Parameters describing the pixel grid in which to fetch data.
Defaults to the native pixel grid of the data.
region - If present, the region of data to return, specified as a GeoJSON
geometry object (see RFC 7946).
bandIds - If present, specifies a specific set of bands from which to get
pixels.
visualizationOptions - If present, a set of visualization options to apply
to produce an 8-bit RGB visualization of the data,
rather than returning the raw data. |
Examples
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# Region of interest.
coords = [
-121.58626826832939,
38.059141484827485,
]
region = ee.Geometry.Point(coords)
# Get a Sentinel-2 image.
image = (ee.ImageCollection('COPERNICUS/S2')
.filterBounds(region)
.filterDate('2020-04-01', '2020-09-01')
.sort('CLOUD_COVERAGE_ASSESSMENT')
.first())
image_id = image.getInfo()['id']
# Make a projection to discover the scale in degrees.
proj = ee.Projection('EPSG:4326').atScale(10).getInfo()
# Get scales out of the transform.
scale_x = proj['transform'][0]
scale_y = -proj['transform'][4]
# Make a request object.
request = {
'assetId': image_id,
'fileFormat': 'PNG',
'bandIds': ['B4', 'B3', 'B2'],
'grid': {
'dimensions': {
'width': 640,
'height': 640
},
'affineTransform': {
'scaleX': scale_x,
'shearX': 0,
'translateX': coords[0],
'shearY': 0,
'scaleY': scale_y,
'translateY': coords[1]
},
'crsCode': proj['crs'],
},
'visualizationOptions': {'ranges': [{'min': 0, 'max': 3000}]},
}
image_png = ee.data.getPixels(request)
# Do something with the image...
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[[["\u003cp\u003e\u003ccode\u003eee.data.getPixels\u003c/code\u003e fetches raw image data or visualized 8-bit RGB data from an Earth Engine image asset.\u003c/p\u003e\n"],["\u003cp\u003eThe function requires specifying the asset ID and allows customization of file format, pixel grid, region, bands, and visualization options.\u003c/p\u003e\n"],["\u003cp\u003eUsers can define the output region, select specific bands for extraction, and apply visualization parameters for an RGB representation.\u003c/p\u003e\n"],["\u003cp\u003ePython examples demonstrate the usage of \u003ccode\u003eee.data.getPixels\u003c/code\u003e with the necessary parameters and retrieving image data.\u003c/p\u003e\n"]]],[],null,["# ee.data.getPixels (Python only)\n\n\u003cbr /\u003e\n\nFetches pixels from an image asset.\n\n\u003cbr /\u003e\n\nReturns:\nThe pixels as raw image data.\n\n| Usage | Returns |\n|-----------------------------|---------------|\n| `ee.data.getPixels(params)` | Object\\|Value |\n\n| Argument | Type | Details |\n|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `params` | Object | An object containing parameters with the following possible values: `assetId` - The asset ID for which to get pixels. Must be an image asset. `fileFormat` - The resulting file format. Defaults to png. See [ImageFileFormat](https://developers.google.com/earth-engine/reference/rest/v1/ImageFileFormat) for the available formats. There are additional formats that convert the downloaded object to a Python data object. These include: `NUMPY_NDARRAY`, which converts to a structured NumPy array. `grid` - Parameters describing the pixel grid in which to fetch data. Defaults to the native pixel grid of the data. `region` - If present, the region of data to return, specified as a GeoJSON geometry object (see RFC 7946). `bandIds` - If present, specifies a specific set of bands from which to get pixels. `visualizationOptions` - If present, a set of visualization options to apply to produce an 8-bit RGB visualization of the data, rather than returning the raw data. |\n\nExamples\n--------\n\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Region of interest.\ncoords = [\n -121.58626826832939,\n 38.059141484827485,\n]\nregion = ee.Geometry.Point(coords)\n\n# Get a Sentinel-2 image.\nimage = (ee.ImageCollection('COPERNICUS/S2')\n .filterBounds(region)\n .filterDate('2020-04-01', '2020-09-01')\n .sort('CLOUD_COVERAGE_ASSESSMENT')\n .first())\nimage_id = image.getInfo()['id']\n\n# Make a projection to discover the scale in degrees.\nproj = ee.Projection('EPSG:4326').atScale(10).getInfo()\n\n# Get scales out of the transform.\nscale_x = proj['transform'][0]\nscale_y = -proj['transform'][4]\n\n# Make a request object.\nrequest = {\n 'assetId': image_id,\n 'fileFormat': 'PNG',\n 'bandIds': ['B4', 'B3', 'B2'],\n 'grid': {\n 'dimensions': {\n 'width': 640,\n 'height': 640\n },\n 'affineTransform': {\n 'scaleX': scale_x,\n 'shearX': 0,\n 'translateX': coords[0],\n 'shearY': 0,\n 'scaleY': scale_y,\n 'translateY': coords[1]\n },\n 'crsCode': proj['crs'],\n },\n 'visualizationOptions': {'ranges': [{'min': 0, 'max': 3000}]},\n}\n\nimage_png = ee.data.getPixels(request)\n# Do something with the image...\n```"]]