Das Paket Classifier
verarbeitet die überwachte Klassifizierung mit herkömmlichen ML-Algorithmen, die in Earth Engine ausgeführt werden. Zu diesen Klassifikatoren gehören CART, RandomForest, NaiveBayes und SVM. Der allgemeine Workflow für die Klassifizierung ist:
- Trainingsdaten erfassen Stellen Sie Features zusammen, die ein Attribut mit dem bekannten Klassenlabel und Attribute mit numerischen Werten für die Vorhersagevariablen enthalten.
- Klassifikator instanziieren Legen Sie bei Bedarf die Parameter fest.
- Klassifikator mit den Trainingsdaten trainieren
- Klassifizieren Sie ein Bild oder eine Funktionssammlung.
- Klassifikationsfehler mit unabhängigen Validierungsdaten schätzen.
Die Trainingsdaten sind ein FeatureCollection
mit einem Attribut, in dem das Klassenlabel gespeichert ist, und Attributen, in denen die Vorhersagevariablen gespeichert sind. Klassenlabels sollten aufeinanderfolgende Ganzzahlen sein, die bei 0 beginnen. Verwenden Sie bei Bedarf remap()
, um Klassenwerte in fortlaufende Ganzzahlen zu konvertieren. Die Vorhersagevariablen sollten numerisch sein.
Trainings- und/oder Validierungsdaten können aus verschiedenen Quellen stammen. Wenn Sie Trainingsdaten interaktiv in Earth Engine erfassen möchten, können Sie die Tools zum Zeichnen von Geometrien verwenden (siehe Abschnitt zu Geometrie-Tools auf der Seite „Code Editor“).
Alternativ können Sie vordefinierte Trainingsdaten aus einem Earth Engine-Tabellen-Asset importieren. Weitere Informationen finden Sie auf der Seite Tabellendaten importieren. Rufen Sie einen Klassifikator über einen der Konstruktoren in ee.Classifier
ab. Trainieren Sie den Klassifikator mit classifier.train()
. Klassifizieren Sie ein Image
oder FeatureCollection
mit classify()
. Im folgenden Beispiel wird ein CART-Klassifikator (Classification and Regression Trees) (Breiman et al. 1984) verwendet, um drei einfache Klassen vorherzusagen:
Code-Editor (JavaScript)
// Define a function that scales and masks Landsat 8 surface reflectance images. function prepSrL8(image) { // Develop masks for unwanted pixels (fill, cloud, cloud shadow). var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0); var saturationMask = image.select('QA_RADSAT').eq(0); // Apply the scaling factors to the appropriate bands. var getFactorImg = function(factorNames) { var factorList = image.toDictionary().select(factorNames).values(); return ee.Image.constant(factorList); }; var scaleImg = getFactorImg([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']); var offsetImg = getFactorImg([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']); var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg); // Replace original bands with scaled bands and apply masks. return image.addBands(scaled, null, true) .updateMask(qaMask).updateMask(saturationMask); } // Make a cloud-free Landsat 8 surface reflectance composite. var image = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2021-03-01', '2021-07-01') .map(prepSrL8) .median(); // Use these bands for prediction. var bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7', 'ST_B10']; // Load training points. The numeric property 'class' stores known labels. var points = ee.FeatureCollection('GOOGLE/EE/DEMOS/demo_landcover_labels'); // This property stores the land cover labels as consecutive // integers starting from zero. var label = 'landcover'; // Overlay the points on the imagery to get training. var training = image.select(bands).sampleRegions({ collection: points, properties: [label], scale: 30 }); // Train a CART classifier with default parameters. var trained = ee.Classifier.smileCart().train(training, label, bands); // Classify the image with the same bands used for training. var classified = image.select(bands).classify(trained); // Display the inputs and the results. Map.setCenter(-122.0877, 37.7880, 11); Map.addLayer(image, {bands: ['SR_B4', 'SR_B3', 'SR_B2'], min: 0, max: 0.25}, 'image'); Map.addLayer(classified, {min: 0, max: 2, palette: ['orange', 'green', 'blue']}, 'classification');
import ee import geemap.core as geemap
Colab (Python)
# Define a function that scales and masks Landsat 8 surface reflectance images. def prep_sr_l8(image): """Scales and masks Landsat 8 surface reflectance images.""" # Develop masks for unwanted pixels (fill, cloud, cloud shadow). qa_mask = image.select('QA_PIXEL').bitwiseAnd(0b11111).eq(0) saturation_mask = image.select('QA_RADSAT').eq(0) # Apply the scaling factors to the appropriate bands. def _get_factor_img(factor_names): factor_list = image.toDictionary().select(factor_names).values() return ee.Image.constant(factor_list) scale_img = _get_factor_img([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']) offset_img = _get_factor_img([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']) scaled = image.select('SR_B.|ST_B10').multiply(scale_img).add(offset_img) # Replace original bands with scaled bands and apply masks. return image.addBands(scaled, None, True).updateMask( qa_mask).updateMask(saturation_mask) # Make a cloud-free Landsat 8 surface reflectance composite. l8_image = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2021-03-01', '2021-07-01') .map(prep_sr_l8) .median()) # Use these bands for prediction. bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7', 'ST_B10'] # Load training points. The numeric property 'class' stores known labels. points = ee.FeatureCollection('GOOGLE/EE/DEMOS/demo_landcover_labels') # This property stores the land cover labels as consecutive # integers starting from zero. label = 'landcover' # Overlay the points on the imagery to get training. training = l8_image.select(bands).sampleRegions( collection=points, properties=[label], scale=30 ) # Train a CART classifier with default parameters. trained = ee.Classifier.smileCart().train(training, label, bands) # Classify the image with the same bands used for training. classified = l8_image.select(bands).classify(trained) # Display the inputs and the results. m = geemap.Map() m.set_center(-122.0877, 37.7880, 11) m.add_layer( l8_image, {'bands': ['SR_B4', 'SR_B3', 'SR_B2'], 'min': 0, 'max': 0.25}, 'image', ) m.add_layer( classified, {'min': 0, 'max': 2, 'palette': ['orange', 'green', 'blue']}, 'classification', ) m
In diesem Beispiel wird in den Trainingspunkten in der Tabelle nur das Klassenlabel gespeichert. Im Trainingsattribut ('landcover'
) werden fortlaufende Ganzzahlen ab 0 gespeichert. Verwenden Sie remap()
in Ihrer Tabelle, um Ihre Klassenlabels bei Bedarf in fortlaufende Ganzzahlen ab 0 umzuwandeln. Beachten Sie auch die Verwendung von image.sampleRegions()
, um die Vorhersagevariablen in die Tabelle aufzunehmen und ein Trainings-Dataset zu erstellen. Geben Sie zum Trainieren des Klassifikators den Namen der Property für das Klassenlabel und eine Liste von Properties in der Trainingstabelle an, die der Klassifikator für Vorhersagevariablen verwenden soll. Die Anzahl und Reihenfolge der Bänder im zu klassifizierenden Bild muss genau der Reihenfolge der Attributliste entsprechen, die für classifier.train()
bereitgestellt wird.
Verwenden Sie image.select()
, um sicherzustellen, dass das Klassifikatorschema mit dem Bild übereinstimmt.
Wenn die Trainingsdaten Polygone sind, die homogene Regionen darstellen, ist jedes Pixel in jedem Polygon ein Trainingspunkt. Sie können Polygone zum Trainieren verwenden, wie im folgenden Beispiel gezeigt:
Code-Editor (JavaScript)
// Define a function that scales and masks Landsat 8 surface reflectance images. function prepSrL8(image) { // Develop masks for unwanted pixels (fill, cloud, cloud shadow). var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0); var saturationMask = image.select('QA_RADSAT').eq(0); // Apply the scaling factors to the appropriate bands. var getFactorImg = function(factorNames) { var factorList = image.toDictionary().select(factorNames).values(); return ee.Image.constant(factorList); }; var scaleImg = getFactorImg([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']); var offsetImg = getFactorImg([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']); var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg); // Replace original bands with scaled bands and apply masks. return image.addBands(scaled, null, true) .updateMask(qaMask).updateMask(saturationMask); } // Make a cloud-free Landsat 8 surface reflectance composite. var image = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2018-01-01', '2019-01-01') .map(prepSrL8) .median(); // Use these bands for prediction. var bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']; // Manually created polygons. var forest1 = ee.Geometry.Rectangle(-63.0187, -9.3958, -62.9793, -9.3443); var forest2 = ee.Geometry.Rectangle(-62.8145, -9.206, -62.7688, -9.1735); var nonForest1 = ee.Geometry.Rectangle(-62.8161, -9.5001, -62.7921, -9.4486); var nonForest2 = ee.Geometry.Rectangle(-62.6788, -9.044, -62.6459, -8.9986); // Make a FeatureCollection from the hand-made geometries. var polygons = ee.FeatureCollection([ ee.Feature(nonForest1, {'class': 0}), ee.Feature(nonForest2, {'class': 0}), ee.Feature(forest1, {'class': 1}), ee.Feature(forest2, {'class': 1}), ]); // Get the values for all pixels in each polygon in the training. var training = image.sampleRegions({ // Get the sample from the polygons FeatureCollection. collection: polygons, // Keep this list of properties from the polygons. properties: ['class'], // Set the scale to get Landsat pixels in the polygons. scale: 30 }); // Create an SVM classifier with custom parameters. var classifier = ee.Classifier.libsvm({ kernelType: 'RBF', gamma: 0.5, cost: 10 }); // Train the classifier. var trained = classifier.train(training, 'class', bands); // Classify the image. var classified = image.classify(trained); // Display the classification result and the input image. Map.setCenter(-62.836, -9.2399, 9); Map.addLayer(image, {bands: ['SR_B4', 'SR_B3', 'SR_B2'], min: 0, max: 0.25}, 'image'); Map.addLayer(polygons, {color: 'yellow'}, 'training polygons'); Map.addLayer(classified, {min: 0, max: 1, palette: ['orange', 'green']}, 'deforestation');
import ee import geemap.core as geemap
Colab (Python)
# Define a function that scales and masks Landsat 8 surface reflectance images. def prep_sr_l8(image): # Develop masks for unwanted pixels (fill, cloud, cloud shadow). qa_mask = image.select('QA_PIXEL').bitwiseAnd(0b11111).eq(0) saturation_mask = image.select('QA_RADSAT').eq(0) # Apply the scaling factors to the appropriate bands. def _get_factor_img(factor_names): factor_list = image.toDictionary().select(factor_names).values() return ee.Image.constant(factor_list) scale_img = _get_factor_img([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']) offset_img = _get_factor_img([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']) scaled = image.select('SR_B.|ST_B10').multiply(scale_img).add(offset_img) # Replace original bands with scaled bands and apply masks. return image.addBands(scaled, None, True).updateMask( qa_mask).updateMask(saturation_mask) # Make a cloud-free Landsat 8 surface reflectance composite. l8_image = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2018-01-01', '2019-01-01') .map(prep_sr_l8) .median()) # Use these bands for prediction. bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'] # Manually created polygons. forest1 = ee.Geometry.Rectangle(-63.0187, -9.3958, -62.9793, -9.3443) forest2 = ee.Geometry.Rectangle(-62.8145, -9.206, -62.7688, -9.1735) non_forest1 = ee.Geometry.Rectangle(-62.8161, -9.5001, -62.7921, -9.4486) non_forest2 = ee.Geometry.Rectangle(-62.6788, -9.044, -62.6459, -8.9986) # Make a FeatureCollection from the hand-made geometries. polygons = ee.FeatureCollection([ ee.Feature(non_forest1, {'class': 0}), ee.Feature(non_forest1, {'class': 0}), ee.Feature(forest1, {'class': 1}), ee.Feature(forest2, {'class': 1}), ]) # Get the values for all pixels in each polygon in the training. training = l8_image.sampleRegions( # Get the sample from the polygons FeatureCollection. collection=polygons, # Keep this list of properties from the polygons. properties=['class'], # Set the scale to get Landsat pixels in the polygons. scale=30, ) # Create an SVM classifier with custom parameters. classifier = ee.Classifier.libsvm(kernelType='RBF', gamma=0.5, cost=10) # Train the classifier. trained = classifier.train(training, 'class', bands) # Classify the image. classified = l8_image.classify(trained) # Display the classification result and the input image. m = geemap.Map() m.set_center(-62.836, -9.2399, 9) m.add_layer( l8_image, {'bands': ['SR_B4', 'SR_B3', 'SR_B2'], 'min': 0, 'max': 0.25}, 'image', ) m.add_layer(polygons, {'color': 'yellow'}, 'training polygons') m.add_layer( classified, {'min': 0, 'max': 1, 'palette': ['orange', 'green']}, 'deforestation', ) m
In diesem Beispiel wird ein SVM-Klassifikator (Support Vector Machine) verwendet (Burges 1998). Die SVM wird mit einer Reihe benutzerdefinierter Parameter angegeben. Ohne A-priori-Informationen über die physische Natur des Vorhersageproblems sind optimale Parameter unbekannt. Einen groben Leitfaden zur Auswahl von Parametern für eine SVM finden Sie unter Hsu et al. (2003).
Ausgabemodi des Klassifikators
Mit der Methode
ee.Classifier.setOutputMode()
wird das Format der Ergebnisse der überwachten Klassifizierung gesteuert. Die Ausgaben können auf verschiedene Arten strukturiert werden:
- CLASSIFICATION (Standard): Die Ausgabe ist die Klassennummer.
- REGRESSION: Die Ausgabe ist das Ergebnis der Standardregression.
- WAHRSCHEINLICHKEIT: Die Ausgabe ist die Wahrscheinlichkeit, dass die Klassifizierung korrekt ist.
- MULTIPROBABILITY: Die Ausgabe ist ein Array von Wahrscheinlichkeiten, dass jede Klasse richtig ist, sortiert nach den gesehenen Klassen.
- RAW: Die Ausgabe ist ein Array der internen Darstellung des Klassifizierungsprozesses. Das können beispielsweise die Rohabstimmungen in Modellen mit mehreren Entscheidungsbäumen sein.
- RAW_REGRESSION: Die Ausgabe ist ein Array der internen Darstellung des Regressionsprozesses. Beispiel: Rohvorhersagen von multiplen Regressionsbäumen.
Die Unterstützung für diese Ausgabemodi variiert. In der folgenden Tabelle sind die unterstützten Modi für die einzelnen Klassifizierer zusammengefasst.
Klassifikator | KLASSIFIZIERUNG | REGRESSION | WAHRSCHEINLICHKEIT | MULTIPROBABILITY | RAW | RAW_REGRESSION |
---|---|---|---|---|---|---|
ee.Classifier.amnhMaxent | ||||||
ee.Classifier.minimumDistance | ||||||
ee.Classifier.smileCart | ||||||
ee.Classifier.smileGradientTreeBoost | ||||||
ee.Classifier.smileKNN | ||||||
ee.Classifier.smileNaiveBayes | ||||||
ee.Classifier.smileRandomForest | ||||||
ee.Classifier.libsvm C_SVC | ||||||
ee.Classifier.libsvm NU_SVC | ||||||
ee.Classifier.libsvm ONE_CLASS | ||||||
ee.Classifier.libsvm EPSILON_SVR | ||||||
ee.Classifier.libsvm NU_SVR |
Verwenden Sie setOutputMode()
vor dem Trainieren eines Klassifikators, um das Ausgabeformat zu definieren.
Sie können den SVM-Klassifikator im vorherigen Codeblock beispielsweise so konfigurieren, dass er Wahrscheinlichkeit anstelle der Standardklassifikationslabels ausgibt:
Code-Editor (JavaScript)
var classifier = ee.Classifier.libsvm({ kernelType: 'RBF', gamma: 0.5, cost: 10 }).setOutputMode('PROBABILITY'); var trained = classifier.train(training, 'class', bands);
import ee import geemap.core as geemap
Colab (Python)
classifier = ee.Classifier.libsvm( kernelType='RBF', gamma=0.5, cost=10 ).setOutputMode('PROBABILITY') trained = classifier.train(training, 'class', bands)
Bewertung der Genauigkeit
Um die Genauigkeit eines Klassifikators zu bewerten, verwenden Sie eine ConfusionMatrix
(Stehman 1997). Im folgenden Beispiel wird sample()
verwendet, um Trainings- und Validierungsdaten aus einem MODIS-Referenzbild zu generieren und Konfusionsmatrizen zu vergleichen, die die Trainings- und Validierungsgenauigkeit darstellen:
Code-Editor (JavaScript)
// Define a region of interest. var roi = ee.Geometry.BBox(-122.93, 36.99, -121.20, 38.16); // Define a function that scales and masks Landsat 8 surface reflectance images. function prepSrL8(image) { // Develop masks for unwanted pixels (fill, cloud, cloud shadow). var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0); var saturationMask = image.select('QA_RADSAT').eq(0); // Apply the scaling factors to the appropriate bands. var getFactorImg = function(factorNames) { var factorList = image.toDictionary().select(factorNames).values(); return ee.Image.constant(factorList); }; var scaleImg = getFactorImg([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']); var offsetImg = getFactorImg([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']); var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg); // Replace original bands with scaled bands and apply masks. return image.addBands(scaled, null, true) .updateMask(qaMask).updateMask(saturationMask); } // Make a cloud-free Landsat 8 surface reflectance composite. var input = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterBounds(roi) .filterDate('2020-03-01', '2020-07-01') .map(prepSrL8) .median() .setDefaultProjection('EPSG:4326', null, 30) .select(['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']); // Use MODIS land cover, IGBP classification, for training. var modis = ee.Image('MODIS/006/MCD12Q1/2020_01_01') .select('LC_Type1'); // Sample the input imagery to get a FeatureCollection of training data. var training = input.addBands(modis).sample({ region: roi, numPixels: 5000, seed: 0 }); // Make a Random Forest classifier and train it. var classifier = ee.Classifier.smileRandomForest(10) .train({ features: training, classProperty: 'LC_Type1', inputProperties: ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'] }); // Classify the input imagery. var classified = input.classify(classifier); // Get a confusion matrix representing resubstitution accuracy. var trainAccuracy = classifier.confusionMatrix(); print('Resubstitution error matrix: ', trainAccuracy); print('Training overall accuracy: ', trainAccuracy.accuracy()); // Sample the input with a different random seed to get validation data. var validation = input.addBands(modis).sample({ region: roi, numPixels: 5000, seed: 1 // Filter the result to get rid of any null pixels. }).filter(ee.Filter.notNull(input.bandNames())); // Classify the validation data. var validated = validation.classify(classifier); // Get a confusion matrix representing expected accuracy. var testAccuracy = validated.errorMatrix('LC_Type1', 'classification'); print('Validation error matrix: ', testAccuracy); print('Validation overall accuracy: ', testAccuracy.accuracy()); // Define a palette for the IGBP classification. var igbpPalette = [ 'aec3d4', // water '152106', '225129', '369b47', '30eb5b', '387242', // forest '6a2325', 'c3aa69', 'b76031', 'd9903d', '91af40', // shrub, grass '111149', // wetlands 'cdb33b', // croplands 'cc0013', // urban '33280d', // crop mosaic 'd7cdcc', // snow and ice 'f7e084', // barren '6f6f6f' // tundra ]; // Display the input and the classification. Map.centerObject(roi, 10); Map.addLayer(input.clip(roi), {bands: ['SR_B4', 'SR_B3', 'SR_B2'], min: 0, max: 0.25}, 'landsat'); Map.addLayer(classified.clip(roi), {palette: igbpPalette, min: 0, max: 17}, 'classification');
import ee import geemap.core as geemap
Colab (Python)
# Define a region of interest. roi = ee.Geometry.BBox(-122.93, 36.99, -121.20, 38.16) # Define a function that scales and masks Landsat 8 surface reflectance images. def prep_sr_l8(image): """Scales and masks Landsat 8 surface reflectance images.""" # Develop masks for unwanted pixels (fill, cloud, cloud shadow). qa_mask = image.select('QA_PIXEL').bitwiseAnd(0b1111).eq(0) saturation_mask = image.select('QA_RADSAT').eq(0) # Apply the scaling factors to the appropriate bands. def _get_factor_img(factor_names): factor_list = image.toDictionary().select(factor_names).values() return ee.Image.constant(factor_list) scale_img = _get_factor_img([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']) offset_img = _get_factor_img([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']) scaled = image.select('SR_B.|ST_B10').multiply(scale_img).add(offset_img) # Replace original bands with scaled bands and apply masks. return image.addBands(scaled, None, True).updateMask( qa_mask).updateMask(saturation_mask) # Make a cloud-free Landsat 8 surface reflectance composite. input_image = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterBounds(roi) .filterDate('2020-03-01', '2020-07-01') .map(prep_sr_l8) .median() .setDefaultProjection('EPSG:4326', None, 30) .select(['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']) ) # Use MODIS land cover, IGBP classification, for training. modis = ee.Image('MODIS/006/MCD12Q1/2020_01_01').select('LC_Type1') # Sample the input imagery to get a FeatureCollection of training data. training = input_image.addBands(modis).sample( region=roi, numPixels=5000, seed=0 ) # Make a Random Forest classifier and train it. classifier = ee.Classifier.smileRandomForest(10).train( features=training, classProperty='LC_Type1', inputProperties=['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'], ) # Classify the input imagery. classified = input_image.classify(classifier) # Get a confusion matrix representing resubstitution accuracy. train_accuracy = classifier.confusionMatrix() display('Resubstitution error matrix:', train_accuracy) display('Training overall accuracy:', train_accuracy.accuracy()) # Sample the input with a different random seed to get validation data. validation = ( input_image.addBands(modis) .sample( region=roi, numPixels=5000, seed=1, # Filter the result to get rid of any null pixels. ) .filter(ee.Filter.notNull(input_image.bandNames())) ) # Classify the validation data. validated = validation.classify(classifier) # Get a confusion matrix representing expected accuracy. test_accuracy = validated.errorMatrix('LC_Type1', 'classification') display('Validation error matrix:', test_accuracy) display('Validation overall accuracy:', test_accuracy.accuracy()) # Define a palette for the IGBP classification. igbp_palette = [ 'aec3d4', # water '152106', '225129', '369b47', '30eb5b', '387242', # forest '6a2325', 'c3aa69', 'b76031', 'd9903d', '91af40', # shrub, grass '111149', # wetlands 'cdb33b', # croplands 'cc0013', # urban '33280d', # crop mosaic 'd7cdcc', # snow and ice 'f7e084', # barren '6f6f6f' # tundra ] # Display the input and the classification with geemap in a notebook. m = geemap.Map() m.center_object(roi, 10) m.add_layer( input_image.clip(roi), {'bands': ['SR_B4', 'SR_B3', 'SR_B2'], 'min': 0, 'max': 0.25}, 'landsat', ) m.add_layer( classified.clip(roi), {'palette': igbp_palette, 'min': 0, 'max': 17}, 'classification', ) m
In diesem Beispiel wird ein Random Forest-Klassifikator (Breiman 2001) mit 10 Bäumen verwendet, um MODIS-Daten auf Landsat-Auflösung herunterzuskalieren. Mit der Methode sample()
werden zwei Zufallsstichproben aus den MODIS-Daten generiert: eine für das Training und eine für die Validierung. Das Trainingsbeispiel wird zum Trainieren des Klassifikators verwendet.
Die Resubstitution-Genauigkeit für die Trainingsdaten können Sie unter classifier.confusionMatrix()
abrufen. Um die Validierungsgenauigkeit zu erhalten, klassifizieren Sie die Validierungsdaten. Dadurch wird der Validierung FeatureCollection
die Eigenschaft classification
hinzugefügt. Rufen Sie errorMatrix()
für die klassifizierte FeatureCollection
auf, um eine Konfusionsmatrix zu erhalten, die die Validierungsgenauigkeit (erwartet) darstellt.
Sehen Sie sich die Ausgabe an. Die aus den Trainingsdaten geschätzte Gesamtgenauigkeit ist viel höher als die der Validierungsdaten. Die aus Trainingsdaten geschätzte Genauigkeit ist eine Überschätzung, da der Random Forest an die Trainingsdaten angepasst wird. Die erwartete Genauigkeit bei unbekannten Daten ist geringer, wie die Schätzung anhand der Validierungsdaten zeigt.
Sie können auch eine einzelne Stichprobe nehmen und sie mit der Methode randomColumn()
für Feature-Sammlungen partitionieren. Fortsetzung des vorherigen Beispiels:
Code-Editor (JavaScript)
var sample = input.addBands(modis).sample({ region: roi, numPixels: 5000, seed: 0 }); // The randomColumn() method will add a column of uniform random // numbers in a column named 'random' by default. sample = sample.randomColumn(); var split = 0.7; // Roughly 70% training, 30% testing. var training = sample.filter(ee.Filter.lt('random', split)); var validation = sample.filter(ee.Filter.gte('random', split));
import ee import geemap.core as geemap
Colab (Python)
sample = input_image.addBands(modis).sample(region=roi, numPixels=5000, seed=0) # The randomColumn() method will add a column of uniform random # numbers in a column named 'random' by default. sample = sample.randomColumn() split = 0.7 # Roughly 70% training, 30% testing. training = sample.filter(ee.Filter.lt('random', split)) validation = sample.filter(ee.Filter.gte('random', split))
Außerdem sollten die Trainingsbeispiele nicht mit den Bewertungsbeispielen korrelieren. Dies kann auf eine räumliche Autokorrelation des vorhergesagten Phänomens zurückzuführen sein. Eine Möglichkeit, Stichproben auszuschließen, die auf diese Weise korreliert sein könnten, besteht darin, Stichproben zu entfernen, die sich in einem bestimmten Abstand zu anderen Stichproben befinden. Dies kann mit einem räumlichen Join erreicht werden:
Code-Editor (JavaScript)
// Sample the input imagery to get a FeatureCollection of training data. var sample = input.addBands(modis).sample({ region: roi, numPixels: 5000, seed: 0, geometries: true, tileScale: 16 }); // The randomColumn() method will add a column of uniform random // numbers in a column named 'random' by default. sample = sample.randomColumn(); var split = 0.7; // Roughly 70% training, 30% testing. var training = sample.filter(ee.Filter.lt('random', split)); print('Training size:', training.size()); var validation = sample.filter(ee.Filter.gte('random', split)); // Spatial join. var distFilter = ee.Filter.withinDistance({ distance: 1000, leftField: '.geo', rightField: '.geo', maxError: 10 }); var join = ee.Join.inverted(); // Apply the join. training = join.apply(training, validation, distFilter); print('Training size after spatial filtering:', training.size());
import ee import geemap.core as geemap
Colab (Python)
# Sample the input imagery to get a FeatureCollection of training data. sample = input_image.addBands(modis).sample( region=roi, numPixels=5000, seed=0, geometries=True, tileScale=16 ) # The randomColumn() method will add a column of uniform random # numbers in a column named 'random' by default. sample = sample.randomColumn() split = 0.7 # Roughly 70% training, 30% testing. training = sample.filter(ee.Filter.lt('random', split)) display('Training size:', training.size()) validation = sample.filter(ee.Filter.gte('random', split)) # Spatial join. dist_filter = ee.Filter.withinDistance( distance=1000, leftField='.geo', rightField='.geo', maxError=10 ) join = ee.Join.inverted() # Apply the join. training = join.apply(training, validation, dist_filter) display('Training size after spatial filtering:', training.size())
Im vorherigen Snippet ist geometries
in sample()
auf true
gesetzt. So bleiben die räumlichen Informationen der Stichprobenpunkte erhalten, die für einen räumlichen Join erforderlich sind. tileScale
ist auf 16
eingestellt.
So wird der Fehler „Speicherlimit für Nutzer überschritten“ vermieden.
Klassifikatoren speichern
Das interaktive Trainieren eines Klassifikators mit einer großen Menge an Eingabedaten ist möglicherweise nicht möglich, da die Eingabe zu groß (>99 MB) ist oder das Training zu lange dauert (5 Minuten).
Verwenden Sie Export.classifier.toAsset
, um das Klassifikator-Training als Batchjob auszuführen, bei dem mehr Arbeitsspeicher und eine längere Laufzeit möglich sind. Klassifizierer, die viel Zeit für das Training benötigen, können exportiert und neu geladen werden, um ein erneutes Training zu vermeiden.
Code-Editor (JavaScript)
// Using the random forest classifier defined earlier, export the random // forest classifier as an Earth Engine asset. var classifierAssetId = 'projects/<PROJECT-ID>/assets/upscaled_MCD12Q1_random_forest'; Export.classifier.toAsset( classifier, 'Saved-random-forest-IGBP-classification', classifierAssetId );
import ee import geemap.core as geemap
Colab (Python)
# Using the random forest classifier defined earlier, export the random # forest classifier as an Earth Engine asset. classifier_asset_id = ( 'projects/<PROJECT-ID>/assets/upscaled_MCD12Q1_random_forest' ) task = ee.batch.Export.classifier.toAsset( classifier, 'Saved-random-forest-IGBP-classification', classifier_asset_id ) task.start()
Verwenden Sie zum Laden des gespeicherten Klassifikators den Algorithmus ee.Classifier.load()
, geben Sie die exportierte Klassifikator-ID an und verwenden Sie ihn wie jeden anderen trainierten Klassifikator.
Code-Editor (JavaScript)
// Once the classifier export finishes, we can load our saved classifier. var savedClassifier = ee.Classifier.load(classifierAssetId); // We can perform classification just as before with the saved classifier now. var classified = input.classify(savedClassifier); Map.addLayer(classified.clip(roi), {palette: igbpPalette, min: 0, max: 17}, 'classification');
import ee import geemap.core as geemap
Colab (Python)
# Once the classifier export finishes, we can load our saved classifier. saved_classifier = ee.Classifier.load(classifier_asset_id) # We can perform classification just as before with the saved classifier now. classified = input_image.classify(saved_classifier) m = geemap.Map() m.center_object(roi, 10) m.add_layer( classified.clip(roi), {'palette': igbp_palette, 'min': 0, 'max': 17}, 'classification', ) m