Export.table를 사용하여 FeatureCollection를 CSV, SHP (셰이프파일), GeoJSON, KML, KMZ 또는 TFRecord로 내보낼 수 있습니다. FeatureCollection는 벡터 또는 단순히 데이터 표를 나타낼 수 있습니다. 후자의 경우 컬렉션의 지형지물에 null 도형이 있습니다.
다음과 같은 일부 파일 형식을 사용할 때는 추가 제약조건에 유의하세요.
KML: KML 파일로 내보낸 FeatureCollection는 모든 도형이 프로젝션되지 않은 (WGS84) 좌표로 변환됩니다.
SHP: 셰이프파일로 내보낸 FeatureCollection에는 도형 유형과 투영이 동일한 지형지물이 포함되어야 하며 셰이프파일 크기 제한 내에 들어맞아야 합니다. 열 이름은 10자(영문 기준) 이하로 자르며 중복된 열 이름을 만들면 안 됩니다.
Export.table.toBigQuery()를 사용하여 FeatureCollection를 BigQuery 테이블로 내보낼 수 있습니다.
이렇게 하면 Earth Engine 데이터를 BigQuery에서 사용 가능한 다른 데이터 및 도구와 통합할 수 있습니다. 자세한 내용은 BigQuery로 내보내기 가이드를 참고하세요.
출력 형식은 지리 데이터를 처리하기 위해 KML로 지정됩니다 (도형이 있는 테이블을 내보내는 데 SHP도 적합함). 지리 정보 없이 데이터 표만 내보내려면 CSV 형식으로 null 도형이 있는 지형지물을 내보내세요. 다음은 Export.table.toDrive()를 사용하여 장기 실행 감소의 결과를 가져오는 방법을 보여줍니다.
[null,null,["최종 업데이트: 2025-07-25(UTC)"],[[["\u003cp\u003e\u003ccode\u003eExport.table\u003c/code\u003e allows you to export \u003ccode\u003eFeatureCollection\u003c/code\u003e data from Earth Engine in various formats like CSV, SHP, GeoJSON, KML, KMZ, and TFRecord, which can represent vector data or simply a table.\u003c/p\u003e\n"],["\u003cp\u003eWhen exporting, be aware of format-specific constraints such as coordinate systems for KML and geometry type/size limits for SHP.\u003c/p\u003e\n"],["\u003cp\u003eYou can export \u003ccode\u003eFeatureCollection\u003c/code\u003e data to your Google Drive, Cloud Storage, or as an Earth Engine asset using designated functions like \u003ccode\u003etoDrive()\u003c/code\u003e, \u003ccode\u003etoCloudStorage()\u003c/code\u003e, and \u003ccode\u003etoAsset()\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eFor exporting data without geographic information, use features with null geometry and export in CSV format, but be mindful of potential data type conversions in Google Drive.\u003c/p\u003e\n"],["\u003cp\u003eEarth Engine table assets have limitations on the number of features, properties, geometry vertices, and string value lengths.\u003c/p\u003e\n"]]],[],null,["# Exporting Table and Vector Data\n\nYou can export a `FeatureCollection` as CSV, SHP (shapefile), GeoJSON, KML, KMZ\nor TFRecord using `Export.table`. The `FeatureCollection` may represent vectors\nor simply a table of data. In the latter case, the features in the collection\nwill have null geometry.\n\nNote some additional constraints when working with some file formats, including:\n\n- **KML** : A `FeatureCollection` exported to a KML file will have all the geometries transformed to unprojected (WGS84) coordinates.\n- **SHP** : A `FeatureCollection` exported to a Shapefile must contain features with the same geometry type and projection and must fit within the [Shapefile size\n limits](https://support.esri.com/en/technical-article/000010813). Column names are truncated to 10 characters or fewer, and this must not create duplicate column names.\n- **TFRecord** : See [this page](/earth-engine/guides/tfrecord#exporting-tables).\n\n| **Note:** If you need control over the precision of geometries in your export, `map()` a function over the collection to be exported: `map(function(f) { return f.transform(targetProj, maxErr); })`\n\nto Cloud Storage\n----------------\n\nTo export a `FeatureCollection` to Cloud Storage, use\n`Export.table.toCloudStorage()`. For example, using the `features` defined\npreviously:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Make a collection of points.\nvar features = ee.FeatureCollection([\n ee.Feature(ee.Geometry.Point(30.41, 59.933), {name: 'Voronoi'}),\n ee.Feature(ee.Geometry.Point(-73.96, 40.781), {name: 'Thiessen'}),\n ee.Feature(ee.Geometry.Point(6.4806, 50.8012), {name: 'Dirichlet'})\n]);\n\n// Export a KML file to Cloud Storage.\nExport.table.toCloudStorage({\n collection: features,\n description:'vectorsToCloudStorageExample',\n bucket: 'your-bucket-name',\n fileNamePrefix: 'exampleTableExport',\n fileFormat: 'KML'\n});\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Make a collection of points.\nfeatures = ee.FeatureCollection([\n ee.Feature(ee.Geometry.Point(30.41, 59.933), {'name': 'Voronoi'}),\n ee.Feature(ee.Geometry.Point(-73.96, 40.781), {'name': 'Thiessen'}),\n ee.Feature(ee.Geometry.Point(6.4806, 50.8012), {'name': 'Dirichlet'}),\n])\n\n# Export a KML file to Cloud Storage.\ntask = ee.batch.Export.table.toCloudStorage(\n collection=features,\n description='vectorsToCloudStorageExample',\n bucket='your-bucket-name',\n fileNamePrefix='exampleTableExport',\n fileFormat='KML',\n)\ntask.start()\n```\n\nto Asset\n--------\n\nTo export a `FeatureCollection` as an Earth Engine asset, use\n`Export.table.toAsset()`. For example, using the `features` defined previously:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Export an ee.FeatureCollection as an Earth Engine asset.\nExport.table.toAsset({\n collection: features,\n description:'exportToTableAssetExample',\n assetId: 'exampleAssetId',\n});\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Export an ee.FeatureCollection as an Earth Engine asset.\ntask = ee.batch.Export.table.toAsset(\n collection=features,\n description='exportToTableAssetExample',\n assetId='projects/your-project/assets/exampleAssetId',\n)\ntask.start()\n```\n\nThere are several limitations on the size and shape of Earth Engine table\nassets:\n\n- Maximum of 100 million features\n- Maximum of 1,000 properties (columns)\n- Maximum of 100,000 vertices for each row's geometry\n- Maximum of 100,000 characters per string value\n\nto BigQuery\n-----------\n\nYou can export a `FeatureCollection` to a BigQuery table using\n[`Export.table.toBigQuery()`](/earth-engine/apidocs/export-table-tobigquery).\nThis lets you integrate your Earth Engine data with other data and tools\navailable in BigQuery. For more information, see the\n[Exporting to BigQuery guide](/earth-engine/guides/exporting_to_bigquery).\n\n### Code Editor (JavaScript)\n\n```javascript\nExport.table.toBigQuery({\n collection: features,\n table: 'myproject.mydataset.mytable',\n description: 'put_my_data_in_bigquery',\n append: true,\n overwrite: false\n});\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\ntask = ee.batch.Export.table.toBigQuery(\n collection=features,\n table='myproject.mydataset.mytable',\n description='put_my_data_in_bigquery',\n append=True,\n overwrite=False,\n)\ntask.start()\n```\n\nto Drive\n--------\n\nTo export a `FeatureCollection` to your Drive account, use\n`Export.table.toDrive()`. For example:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Export the FeatureCollection to a KML file.\nExport.table.toDrive({\n collection: features,\n description:'vectorsToDriveExample',\n fileFormat: 'KML'\n});\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Export the FeatureCollection to a KML file.\ntask = ee.batch.Export.table.toDrive(\n collection=features, description='vectorsToDriveExample', fileFormat='KML'\n)\ntask.start()\n```\n\nNote that the output format is specified as KML to handle geographic data (SHP\nwould also be appropriate for exporting a table with geometry). To export just a\ntable of data, without any geographic information, export features with null\ngeometry in CSV format. The following demonstrates using\n`Export.table.toDrive()` to get the results of a potentially long running\nreduction:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a Landsat image.\nvar image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318');\nvar projection = image.select('B2').projection().getInfo();\n\n// Create an arbitrary rectangle.\nvar region = ee.Geometry.Rectangle(-122.2806, 37.1209, -122.0554, 37.2413);\n\n// Get a dictionary of means in the region.\nvar means = image.reduceRegion({\n reducer: ee.Reducer.mean(),\n geometry: region,\n crs: projection.crs,\n crsTransform: projection.transform,\n});\n\n// Make a feature without geometry and set the properties to the dictionary of means.\nvar feature = ee.Feature(null, means);\n\n// Wrap the Feature in a FeatureCollection for export.\nvar featureCollection = ee.FeatureCollection([feature]);\n\n// Export the FeatureCollection.\nExport.table.toDrive({\n collection: featureCollection,\n description: 'exportTableExample',\n fileFormat: 'CSV'\n});\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a Landsat image.\nimage = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318')\nprojection = image.select('B2').projection().getInfo()\n\n# Create an arbitrary rectangle.\nregion = ee.Geometry.Rectangle(-122.2806, 37.1209, -122.0554, 37.2413)\n\n# Get a dictionary of means in the region.\nmeans = image.reduceRegion(\n reducer=ee.Reducer.mean(),\n geometry=region,\n crs=projection['crs'],\n crsTransform=projection['transform'],\n)\n\n# Make a feature without geometry and set the properties to the dictionary of means.\nfeature = ee.Feature(None, means)\n\n# Wrap the Feature in a FeatureCollection for export.\nfeature_collection = ee.FeatureCollection([feature])\n\n# Export the FeatureCollection.\ntask = ee.batch.Export.table.toDrive(\n collection=feature_collection,\n description='exportTableExample',\n fileFormat='CSV',\n)\ntask.start()\n```\n\nNote that the format is set to 'CSV' in this example since there is no geometry\nin the output.\n| **Caution:** Depending on your Google Drive settings, CSV tables that you export from Earth Engine can be converted to XSLX files with unintended effects, such as data type conversions. The behavior can be modified with [Google Drive\n| settings](/earth-engine/faq#tables_exported_to_drive_as_csv_format_are_converted_to_xslx_format)."]]