Announcement: All noncommercial projects registered to use Earth Engine before
April 15, 2025 must
verify noncommercial eligibility to maintain Earth Engine access.
Feature Overview
Stay organized with collections
Save and categorize content based on your preferences.
A Feature
in Earth Engine is defined as a GeoJSON Feature. Specifically,
a Feature
is an object with a geometry
property storing a
Geometry
object (or null) and a properties
property storing a
dictionary of other properties.
Creating Feature objects
To create a Feature
, provide the constructor with a Geometry
and (optionally) a dictionary of other properties. For example:
Code Editor (JavaScript)
// Create an ee.Geometry.
var polygon = ee.Geometry.Polygon([
[[-35, -10], [35, -10], [35, 10], [-35, 10], [-35, -10]]
]);
// Create a Feature from the Geometry.
var polyFeature = ee.Feature(polygon, {foo: 42, bar: 'tart'});
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# Create an ee.Geometry.
polygon = ee.Geometry.Polygon(
[[[-35, -10], [35, -10], [35, 10], [-35, 10], [-35, -10]]]
)
# Create a Feature from the Geometry.
poly_feature = ee.Feature(polygon, {'foo': 42, 'bar': 'tart'})
As with a Geometry
, a Feature
may be printed or added to the
map for inspection and visualization:
Code Editor (JavaScript)
print(polyFeature);
Map.addLayer(polyFeature, {}, 'feature');
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
display(poly_feature)
m = geemap.Map()
m.add_layer(poly_feature, {}, 'feature')
display(m)
A Feature
need not have a Geometry
and may simply wrap a
dictionary of properties. For example:
Code Editor (JavaScript)
// Create a dictionary of properties, some of which may be computed values.
var dict = {foo: ee.Number(8).add(88), bar: 'nihao'};
// Create a null geometry feature with the dictionary of properties.
var nowhereFeature = ee.Feature(null, dict);
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# Create a dictionary of properties, some of which may be computed values.
dic = {'foo': ee.Number(8).add(88), 'bar': 'nihao'}
# Create a null geometry feature with the dictionary of properties.
nowhere_feature = ee.Feature(None, dic)
In this example, note that the dictionary supplied to the Feature
contains a
computed value. Creating features in this manner is useful for exporting long-running
computations with a Dictionary
result (e.g. image.reduceRegion()
).
See the FeatureCollections and
Importing Table Data or Exporting guides for
details.
Each Feature
has one primary Geometry
stored in the
geometry
property. Additional geometries may be stored in other properties.
Geometry
methods such as intersection and buffer also exist on
Feature
as a convenience for getting the primary Geometry
,
applying the operation, and setting the result as the new primary Geometry
.
The result will retain all the other properties of the Feature
on which
the method is called. There are also methods for getting and setting the non-geometry
properties of the Feature
. For example:
Code Editor (JavaScript)
// Make a feature and set some properties.
var feature = ee.Feature(ee.Geometry.Point([-122.22599, 37.17605]))
.set('genus', 'Sequoia').set('species', 'sempervirens');
// Get a property from the feature.
var species = feature.get('species');
print(species);
// Set a new property.
feature = feature.set('presence', 1);
// Overwrite the old properties with a new dictionary.
var newDict = {genus: 'Brachyramphus', species: 'marmoratus'};
var feature = feature.set(newDict);
// Check the result.
print(feature);
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# Make a feature and set some properties.
feature = (
ee.Feature(ee.Geometry.Point([-122.22599, 37.17605]))
.set('genus', 'Sequoia')
.set('species', 'sempervirens')
)
# Get a property from the feature.
species = feature.get('species')
display(species)
# Set a new property.
feature = feature.set('presence', 1)
# Overwrite the old properties with a new dictionary.
new_dic = {'genus': 'Brachyramphus', 'species': 'marmoratus'}
feature = feature.set(new_dic)
# Check the result.
display(feature)
In the previous example, note that properties can be set with either a key-value pair,
or with a dictionary. Also note that feature.set()
overwrites existing properties.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-03 UTC.
[null,null,["Last updated 2024-06-03 UTC."],[[["\u003cp\u003eIn Earth Engine, a \u003ccode\u003eFeature\u003c/code\u003e is a GeoJSON Feature containing a \u003ccode\u003egeometry\u003c/code\u003e and \u003ccode\u003eproperties\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eFeature\u003c/code\u003e objects can be created using a \u003ccode\u003eGeometry\u003c/code\u003e and an optional dictionary of properties.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eFeature\u003c/code\u003e objects can be visualized on the map and printed for inspection.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eFeature\u003c/code\u003e objects can have their properties set, retrieved, and overwritten using \u003ccode\u003eset()\u003c/code\u003e and \u003ccode\u003eget()\u003c/code\u003e.\u003c/p\u003e\n"]]],[],null,["# Feature Overview\n\nA `Feature` in Earth Engine is defined as a GeoJSON Feature. Specifically,\na `Feature` is an object with a `geometry` property storing a\n`Geometry` object (or null) and a `properties` property storing a\ndictionary of other properties.\n\nCreating Feature objects\n------------------------\n\nTo create a `Feature`, provide the constructor with a `Geometry`\nand (optionally) a dictionary of other properties. For example:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Create an ee.Geometry.\nvar polygon = ee.Geometry.Polygon([\n [[-35, -10], [35, -10], [35, 10], [-35, 10], [-35, -10]]\n]);\n\n// Create a Feature from the Geometry.\nvar polyFeature = ee.Feature(polygon, {foo: 42, bar: 'tart'});\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Create an ee.Geometry.\npolygon = ee.Geometry.Polygon(\n [[[-35, -10], [35, -10], [35, 10], [-35, 10], [-35, -10]]]\n)\n\n# Create a Feature from the Geometry.\npoly_feature = ee.Feature(polygon, {'foo': 42, 'bar': 'tart'})\n```\n\nAs with a `Geometry`, a `Feature` may be printed or added to the\nmap for inspection and visualization:\n\n### Code Editor (JavaScript)\n\n```javascript\nprint(polyFeature);\nMap.addLayer(polyFeature, {}, 'feature');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\ndisplay(poly_feature)\nm = geemap.Map()\nm.add_layer(poly_feature, {}, 'feature')\ndisplay(m)\n```\n\nA `Feature` need not have a `Geometry` and may simply wrap a\ndictionary of properties. For example:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Create a dictionary of properties, some of which may be computed values.\nvar dict = {foo: ee.Number(8).add(88), bar: 'nihao'};\n\n// Create a null geometry feature with the dictionary of properties.\nvar nowhereFeature = ee.Feature(null, dict);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Create a dictionary of properties, some of which may be computed values.\ndic = {'foo': ee.Number(8).add(88), 'bar': 'nihao'}\n\n# Create a null geometry feature with the dictionary of properties.\nnowhere_feature = ee.Feature(None, dic)\n```\n\nIn this example, note that the dictionary supplied to the `Feature` contains a\ncomputed value. Creating features in this manner is useful for exporting long-running\ncomputations with a `Dictionary` result (e.g. `image.reduceRegion()`).\nSee the [FeatureCollections](/earth-engine/guides/feature_collections) and\n[Importing Table Data](/earth-engine/guides/table_upload) or [Exporting](/earth-engine/guides/exporting) guides for\ndetails.\n\nEach `Feature` has one primary `Geometry` stored in the\n`geometry` property. Additional geometries may be stored in other properties.\n`Geometry` methods such as intersection and buffer also exist on\n`Feature` as a convenience for getting the primary `Geometry`,\napplying the operation, and setting the result as the new primary `Geometry`.\nThe result will retain all the other properties of the `Feature` on which\nthe method is called. There are also methods for getting and setting the non-geometry\nproperties of the `Feature`. For example:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Make a feature and set some properties.\nvar feature = ee.Feature(ee.Geometry.Point([-122.22599, 37.17605]))\n .set('genus', 'Sequoia').set('species', 'sempervirens');\n\n// Get a property from the feature.\nvar species = feature.get('species');\nprint(species);\n\n// Set a new property.\nfeature = feature.set('presence', 1);\n\n// Overwrite the old properties with a new dictionary.\nvar newDict = {genus: 'Brachyramphus', species: 'marmoratus'};\nvar feature = feature.set(newDict);\n\n// Check the result.\nprint(feature);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Make a feature and set some properties.\nfeature = (\n ee.Feature(ee.Geometry.Point([-122.22599, 37.17605]))\n .set('genus', 'Sequoia')\n .set('species', 'sempervirens')\n)\n\n# Get a property from the feature.\nspecies = feature.get('species')\ndisplay(species)\n\n# Set a new property.\nfeature = feature.set('presence', 1)\n\n# Overwrite the old properties with a new dictionary.\nnew_dic = {'genus': 'Brachyramphus', 'species': 'marmoratus'}\nfeature = feature.set(new_dic)\n\n# Check the result.\ndisplay(feature)\n```\n\nIn the previous example, note that properties can be set with either a key-value pair,\nor with a dictionary. Also note that `feature.set()`\noverwrites existing properties."]]