お知らせ:
2025 年 4 月 15 日より前に Earth Engine の使用を登録したすべての非商用プロジェクトは、Earth Engine へのアクセスを維持するために
非商用目的での利用資格を確認する必要があります。
ImageCollection の情報とメタデータ
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
画像と同様に、ImageCollection
に関する情報を取得する方法はいくつかあります。コレクションはコンソールに直接出力できますが、コンソールの出力は 5,000 要素に制限されています。5,000 枚を超えるコレクションは、印刷前にフィルタする必要があります。コレクションが大きいほど、印刷に時間がかかります。次の例は、画像コレクションに関する情報をプログラムで取得するさまざまな方法を示しています。
コードエディタ(JavaScript)
// Load a Landsat 8 ImageCollection for a single path-row.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filter(ee.Filter.eq('WRS_PATH', 44))
.filter(ee.Filter.eq('WRS_ROW', 34))
.filterDate('2014-03-01', '2014-08-01');
print('Collection: ', collection);
// Get the number of images.
var count = collection.size();
print('Count: ', count);
// Get the date range of images in the collection.
var range = collection.reduceColumns(ee.Reducer.minMax(), ['system:time_start'])
print('Date range: ', ee.Date(range.get('min')), ee.Date(range.get('max')))
// Get statistics for a property of the images in the collection.
var sunStats = collection.aggregate_stats('SUN_ELEVATION');
print('Sun elevation statistics: ', sunStats);
// Sort by a cloud cover property, get the least cloudy image.
var image = ee.Image(collection.sort('CLOUD_COVER').first());
print('Least cloudy image: ', image);
// Limit the collection to the 10 most recent images.
var recent = collection.sort('system:time_start', false).limit(10);
print('Recent images: ', recent);
Python の設定
Python API とインタラクティブな開発で geemap
を使用する方法については、
Python 環境のページをご覧ください。
import ee
import geemap.core as geemap
Colab(Python)
# Load a Landsat 8 ImageCollection for a single path-row.
collection = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filter(ee.Filter.eq('WRS_PATH', 44))
.filter(ee.Filter.eq('WRS_ROW', 34))
.filterDate('2014-03-01', '2014-08-01')
)
display('Collection:', collection)
# Get the number of images.
count = collection.size()
display('Count:', count)
# Get the date range of images in the collection.
range = collection.reduceColumns(ee.Reducer.minMax(), ['system:time_start'])
display('Date range:', ee.Date(range.get('min')), ee.Date(range.get('max')))
# Get statistics for a property of the images in the collection.
sun_stats = collection.aggregate_stats('SUN_ELEVATION')
display('Sun elevation statistics:', sun_stats)
# Sort by a cloud cover property, get the least cloudy image.
image = ee.Image(collection.sort('CLOUD_COVER').first())
display('Least cloudy image:', image)
# Limit the collection to the 10 most recent images.
recent = collection.sort('system:time_start', False).limit(10)
display('Recent images:', recent)
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-25 UTC。
[null,null,["最終更新日 2025-07-25 UTC。"],[[["\u003cp\u003eThis guide demonstrates how to programmatically retrieve information from Earth Engine ImageCollections, such as size, date range, image properties, and specific images.\u003c/p\u003e\n"],["\u003cp\u003eYou can print an ImageCollection to the console, but for collections larger than 5000 images, filtering is necessary before printing to avoid slowdowns.\u003c/p\u003e\n"],["\u003cp\u003eExamples are provided using the JavaScript and Python APIs for tasks like filtering, sorting, getting statistics, and limiting the collection size.\u003c/p\u003e\n"],["\u003cp\u003eIt shows how to get specific images from the collection, including the least cloudy or the most recent ones, based on properties and sorting.\u003c/p\u003e\n"],["\u003cp\u003eThe code snippets are readily usable in Code Editor, Colab, or any Python environment set up for Earth Engine, with \u003ccode\u003egeemap\u003c/code\u003e suggested for interactive Python development.\u003c/p\u003e\n"]]],[],null,["# ImageCollection Information and Metadata\n\nAs with Images, there are a variety of ways to get information about an\n`ImageCollection`. The collection can be printed directly to the console,\nbut the console printout is limited to 5000 elements. Collections larger than 5000\nimages will need to be filtered before printing. Printing a large collection will be\ncorrespondingly slower. The following example shows various ways of getting information\nabout image collections programmatically:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a Landsat 8 ImageCollection for a single path-row.\nvar collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filter(ee.Filter.eq('WRS_PATH', 44))\n .filter(ee.Filter.eq('WRS_ROW', 34))\n .filterDate('2014-03-01', '2014-08-01');\nprint('Collection: ', collection);\n\n// Get the number of images.\nvar count = collection.size();\nprint('Count: ', count);\n\n// Get the date range of images in the collection.\nvar range = collection.reduceColumns(ee.Reducer.minMax(), ['system:time_start'])\nprint('Date range: ', ee.Date(range.get('min')), ee.Date(range.get('max')))\n\n// Get statistics for a property of the images in the collection.\nvar sunStats = collection.aggregate_stats('SUN_ELEVATION');\nprint('Sun elevation statistics: ', sunStats);\n\n// Sort by a cloud cover property, get the least cloudy image.\nvar image = ee.Image(collection.sort('CLOUD_COVER').first());\nprint('Least cloudy image: ', image);\n\n// Limit the collection to the 10 most recent images.\nvar recent = collection.sort('system:time_start', false).limit(10);\nprint('Recent images: ', recent);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a Landsat 8 ImageCollection for a single path-row.\ncollection = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filter(ee.Filter.eq('WRS_PATH', 44))\n .filter(ee.Filter.eq('WRS_ROW', 34))\n .filterDate('2014-03-01', '2014-08-01')\n)\ndisplay('Collection:', collection)\n\n# Get the number of images.\ncount = collection.size()\ndisplay('Count:', count)\n\n# Get the date range of images in the collection.\nrange = collection.reduceColumns(ee.Reducer.minMax(), ['system:time_start'])\ndisplay('Date range:', ee.Date(range.get('min')), ee.Date(range.get('max')))\n\n# Get statistics for a property of the images in the collection.\nsun_stats = collection.aggregate_stats('SUN_ELEVATION')\ndisplay('Sun elevation statistics:', sun_stats)\n\n# Sort by a cloud cover property, get the least cloudy image.\nimage = ee.Image(collection.sort('CLOUD_COVER').first())\ndisplay('Least cloudy image:', image)\n\n# Limit the collection to the 10 most recent images.\nrecent = collection.sort('system:time_start', False).limit(10)\ndisplay('Recent images:', recent)\n```"]]