公告:所有在
2025 年 4 月 15 日之前注册使用 Earth Engine 的非商业项目都必须
验证是否符合非商业性质的资格条件,才能继续使用 Earth Engine。
ImageCollection 信息和元数据
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
与图片一样,您可以通过多种方式获取 ImageCollection
的相关信息。集合可以直接输出到控制台,但控制台输出内容的元素数上限为 5,000 个。收藏夹中超过 5,000 张图片的照片需要先过滤,然后才能打印。相应地,输出大型集合会更慢。以下示例展示了以编程方式获取图片集信息的各种方式:
Code Editor (JavaScript)
// Load a Landsat 8 ImageCollection for a single path-row.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filter(ee.Filter.eq('WRS_PATH', 44))
.filter(ee.Filter.eq('WRS_ROW', 34))
.filterDate('2014-03-01', '2014-08-01');
print('Collection: ', collection);
// Get the number of images.
var count = collection.size();
print('Count: ', count);
// Get the date range of images in the collection.
var range = collection.reduceColumns(ee.Reducer.minMax(), ['system:time_start'])
print('Date range: ', ee.Date(range.get('min')), ee.Date(range.get('max')))
// Get statistics for a property of the images in the collection.
var sunStats = collection.aggregate_stats('SUN_ELEVATION');
print('Sun elevation statistics: ', sunStats);
// Sort by a cloud cover property, get the least cloudy image.
var image = ee.Image(collection.sort('CLOUD_COVER').first());
print('Least cloudy image: ', image);
// Limit the collection to the 10 most recent images.
var recent = collection.sort('system:time_start', false).limit(10);
print('Recent images: ', recent);
Python 设置
如需了解 Python API 以及如何使用 geemap
进行交互式开发,请参阅
Python 环境页面。
import ee
import geemap.core as geemap
Colab (Python)
# Load a Landsat 8 ImageCollection for a single path-row.
collection = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filter(ee.Filter.eq('WRS_PATH', 44))
.filter(ee.Filter.eq('WRS_ROW', 34))
.filterDate('2014-03-01', '2014-08-01')
)
display('Collection:', collection)
# Get the number of images.
count = collection.size()
display('Count:', count)
# Get the date range of images in the collection.
range = collection.reduceColumns(ee.Reducer.minMax(), ['system:time_start'])
display('Date range:', ee.Date(range.get('min')), ee.Date(range.get('max')))
# Get statistics for a property of the images in the collection.
sun_stats = collection.aggregate_stats('SUN_ELEVATION')
display('Sun elevation statistics:', sun_stats)
# Sort by a cloud cover property, get the least cloudy image.
image = ee.Image(collection.sort('CLOUD_COVER').first())
display('Least cloudy image:', image)
# Limit the collection to the 10 most recent images.
recent = collection.sort('system:time_start', False).limit(10)
display('Recent images:', recent)
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-07-25。
[null,null,["最后更新时间 (UTC):2025-07-25。"],[[["\u003cp\u003eThis guide demonstrates how to programmatically retrieve information from Earth Engine ImageCollections, such as size, date range, image properties, and specific images.\u003c/p\u003e\n"],["\u003cp\u003eYou can print an ImageCollection to the console, but for collections larger than 5000 images, filtering is necessary before printing to avoid slowdowns.\u003c/p\u003e\n"],["\u003cp\u003eExamples are provided using the JavaScript and Python APIs for tasks like filtering, sorting, getting statistics, and limiting the collection size.\u003c/p\u003e\n"],["\u003cp\u003eIt shows how to get specific images from the collection, including the least cloudy or the most recent ones, based on properties and sorting.\u003c/p\u003e\n"],["\u003cp\u003eThe code snippets are readily usable in Code Editor, Colab, or any Python environment set up for Earth Engine, with \u003ccode\u003egeemap\u003c/code\u003e suggested for interactive Python development.\u003c/p\u003e\n"]]],[],null,["# ImageCollection Information and Metadata\n\nAs with Images, there are a variety of ways to get information about an\n`ImageCollection`. The collection can be printed directly to the console,\nbut the console printout is limited to 5000 elements. Collections larger than 5000\nimages will need to be filtered before printing. Printing a large collection will be\ncorrespondingly slower. The following example shows various ways of getting information\nabout image collections programmatically:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a Landsat 8 ImageCollection for a single path-row.\nvar collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filter(ee.Filter.eq('WRS_PATH', 44))\n .filter(ee.Filter.eq('WRS_ROW', 34))\n .filterDate('2014-03-01', '2014-08-01');\nprint('Collection: ', collection);\n\n// Get the number of images.\nvar count = collection.size();\nprint('Count: ', count);\n\n// Get the date range of images in the collection.\nvar range = collection.reduceColumns(ee.Reducer.minMax(), ['system:time_start'])\nprint('Date range: ', ee.Date(range.get('min')), ee.Date(range.get('max')))\n\n// Get statistics for a property of the images in the collection.\nvar sunStats = collection.aggregate_stats('SUN_ELEVATION');\nprint('Sun elevation statistics: ', sunStats);\n\n// Sort by a cloud cover property, get the least cloudy image.\nvar image = ee.Image(collection.sort('CLOUD_COVER').first());\nprint('Least cloudy image: ', image);\n\n// Limit the collection to the 10 most recent images.\nvar recent = collection.sort('system:time_start', false).limit(10);\nprint('Recent images: ', recent);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a Landsat 8 ImageCollection for a single path-row.\ncollection = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filter(ee.Filter.eq('WRS_PATH', 44))\n .filter(ee.Filter.eq('WRS_ROW', 34))\n .filterDate('2014-03-01', '2014-08-01')\n)\ndisplay('Collection:', collection)\n\n# Get the number of images.\ncount = collection.size()\ndisplay('Count:', count)\n\n# Get the date range of images in the collection.\nrange = collection.reduceColumns(ee.Reducer.minMax(), ['system:time_start'])\ndisplay('Date range:', ee.Date(range.get('min')), ee.Date(range.get('max')))\n\n# Get statistics for a property of the images in the collection.\nsun_stats = collection.aggregate_stats('SUN_ELEVATION')\ndisplay('Sun elevation statistics:', sun_stats)\n\n# Sort by a cloud cover property, get the least cloudy image.\nimage = ee.Image(collection.sort('CLOUD_COVER').first())\ndisplay('Least cloudy image:', image)\n\n# Limit the collection to the 10 most recent images.\nrecent = collection.sort('system:time_start', False).limit(10)\ndisplay('Recent images:', recent)\n```"]]