Announcement: All noncommercial projects registered to use Earth Engine before
April 15, 2025 must
verify noncommercial eligibility to maintain Earth Engine access.
Grouped Reductions and Zonal Statistics
Stay organized with collections
Save and categorize content based on your preferences.
You can get statistics in each zone of an Image
or
FeatureCollection
by using reducer.group()
to group the output
of a reducer by the value of a specified input. For example, to compute the total
population and number of housing units in each state, this example groups the output of
a reduction of a census block FeatureCollection
as follows:
Code Editor (JavaScript)
// Load a collection of US census blocks.
var blocks = ee.FeatureCollection('TIGER/2010/Blocks');
// Compute sums of the specified properties, grouped by state code.
var sums = blocks
.filter(ee.Filter.and(
ee.Filter.neq('pop10', null),
ee.Filter.neq('housing10', null)))
.reduceColumns({
selectors: ['pop10', 'housing10', 'statefp10'],
reducer: ee.Reducer.sum().repeat(2).group({
groupField: 2,
groupName: 'state-code',
})
});
// Print the resultant Dictionary.
print(sums);
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# Load a collection of US census blocks.
blocks = ee.FeatureCollection('TIGER/2010/Blocks')
# Compute sums of the specified properties, grouped by state code.
sums = blocks.filter(
ee.Filter.And(
ee.Filter.neq('pop10', None), ee.Filter.neq('housing10', None)
)
).reduceColumns(
selectors=['pop10', 'housing10', 'statefp10'],
reducer=ee.Reducer.sum()
.repeat(2)
.group(groupField=2, groupName='state-code'),
)
# Print the resultant Dictionary.
display(sums)
The groupField
argument is the index of the input in the selectors array
that contains the codes by which to group, the groupName
argument specifies
the name of the property to store the value of the grouping variable. Since the reducer
is not automatically repeated for each input, the repeat(2)
call is needed.
To group output of image.reduceRegions()
you can specify a grouping band
that defines groups by integer pixel values. This type of computation is sometimes called
"zonal statistics" where the zones are specified as the grouping band and the statistic
is determined by the reducer. In the following example, change in nightlights in the
United States is grouped by land cover category:
Code Editor (JavaScript)
// Load a region representing the United States
var region = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017')
.filter(ee.Filter.eq('country_na', 'United States'));
// Load MODIS land cover categories in 2001.
var landcover = ee.Image('MODIS/051/MCD12Q1/2001_01_01')
// Select the IGBP classification band.
.select('Land_Cover_Type_1');
// Load nightlights image inputs.
var nl2001 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F152001')
.select('stable_lights');
var nl2012 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182012')
.select('stable_lights');
// Compute the nightlights decadal difference, add land cover codes.
var nlDiff = nl2012.subtract(nl2001).addBands(landcover);
// Grouped a mean reducer: change of nightlights by land cover category.
var means = nlDiff.reduceRegion({
reducer: ee.Reducer.mean().group({
groupField: 1,
groupName: 'code',
}),
geometry: region.geometry(),
scale: 1000,
maxPixels: 1e8
});
// Print the resultant Dictionary.
print(means);
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# Load a region representing the United States
region = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017').filter(
ee.Filter.eq('country_na', 'United States')
)
# Load MODIS land cover categories in 2001.
landcover = ee.Image('MODIS/051/MCD12Q1/2001_01_01').select(
# Select the IGBP classification band.
'Land_Cover_Type_1'
)
# Load nightlights image inputs.
nl_2001 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F152001').select(
'stable_lights'
)
nl_2012 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182012').select(
'stable_lights'
)
# Compute the nightlights decadal difference, add land cover codes.
nl_diff = nl_2012.subtract(nl_2001).addBands(landcover)
# Grouped a mean reducer: change of nightlights by land cover category.
means = nl_diff.reduceRegion(
reducer=ee.Reducer.mean().group(groupField=1, groupName='code'),
geometry=region.geometry(),
scale=1000,
maxPixels=1e8,
)
# Print the resultant Dictionary.
display(means)
Note that in this example, the groupField
is the index of the band
containing the zones by which to group the output. The first band is index 0, the second
is index 1, etc.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-01-02 UTC.
[null,null,["Last updated 2025-01-02 UTC."],[[["\u003cp\u003eUse \u003ccode\u003ereducer.group()\u003c/code\u003e with \u003ccode\u003ereduceColumns()\u003c/code\u003e on \u003ccode\u003eFeatureCollection\u003c/code\u003e to compute statistics for groups based on a property, like calculating total population per state.\u003c/p\u003e\n"],["\u003cp\u003eUtilize \u003ccode\u003ereducer.group()\u003c/code\u003e with \u003ccode\u003ereduceRegion()\u003c/code\u003e on \u003ccode\u003eImage\u003c/code\u003e to compute zonal statistics, such as averaging nightlight changes within different land cover categories.\u003c/p\u003e\n"],["\u003cp\u003eSpecify the \u003ccode\u003egroupField\u003c/code\u003e argument in \u003ccode\u003ereducer.group()\u003c/code\u003e as the index of the selector or band containing the grouping categories.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003egroupName\u003c/code\u003e argument in \u003ccode\u003ereducer.group()\u003c/code\u003e determines the name of the property storing the grouping variable's value in the output dictionary.\u003c/p\u003e\n"],["\u003cp\u003eRemember to use \u003ccode\u003erepeat()\u003c/code\u003e with \u003ccode\u003ereduceColumns()\u003c/code\u003e when applying multiple reducers, ensuring calculations are performed for each selected property.\u003c/p\u003e\n"]]],[],null,["# Grouped Reductions and Zonal Statistics\n\nYou can get statistics in each zone of an `Image` or\n`FeatureCollection` by using `reducer.group()` to group the output\nof a reducer by the value of a specified input. For example, to compute the total\npopulation and number of housing units in each state, this example groups the output of\na reduction of a census block `FeatureCollection` as follows:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a collection of US census blocks.\nvar blocks = ee.FeatureCollection('TIGER/2010/Blocks');\n\n// Compute sums of the specified properties, grouped by state code.\nvar sums = blocks\n .filter(ee.Filter.and(\n ee.Filter.neq('pop10', null),\n ee.Filter.neq('housing10', null)))\n .reduceColumns({\n selectors: ['pop10', 'housing10', 'statefp10'],\n reducer: ee.Reducer.sum().repeat(2).group({\n groupField: 2,\n groupName: 'state-code',\n })\n});\n\n// Print the resultant Dictionary.\nprint(sums);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a collection of US census blocks.\nblocks = ee.FeatureCollection('TIGER/2010/Blocks')\n\n# Compute sums of the specified properties, grouped by state code.\nsums = blocks.filter(\n ee.Filter.And(\n ee.Filter.neq('pop10', None), ee.Filter.neq('housing10', None)\n )\n).reduceColumns(\n selectors=['pop10', 'housing10', 'statefp10'],\n reducer=ee.Reducer.sum()\n .repeat(2)\n .group(groupField=2, groupName='state-code'),\n)\n\n# Print the resultant Dictionary.\ndisplay(sums)\n```\n\nThe `groupField` argument is the index of the input in the selectors array\nthat contains the codes by which to group, the `groupName` argument specifies\nthe name of the property to store the value of the grouping variable. Since the reducer\nis not automatically repeated for each input, the `repeat(2)` call is needed.\n\nTo group output of `image.reduceRegions()` you can specify a grouping band\nthat defines groups by integer pixel values. This type of computation is sometimes called\n\"zonal statistics\" where the zones are specified as the grouping band and the statistic\nis determined by the reducer. In the following example, change in nightlights in the\nUnited States is grouped by land cover category:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a region representing the United States\nvar region = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017')\n .filter(ee.Filter.eq('country_na', 'United States'));\n\n// Load MODIS land cover categories in 2001.\nvar landcover = ee.Image('MODIS/051/MCD12Q1/2001_01_01')\n // Select the IGBP classification band.\n .select('Land_Cover_Type_1');\n\n// Load nightlights image inputs.\nvar nl2001 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F152001')\n .select('stable_lights');\nvar nl2012 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182012')\n .select('stable_lights');\n\n// Compute the nightlights decadal difference, add land cover codes.\nvar nlDiff = nl2012.subtract(nl2001).addBands(landcover);\n\n// Grouped a mean reducer: change of nightlights by land cover category.\nvar means = nlDiff.reduceRegion({\n reducer: ee.Reducer.mean().group({\n groupField: 1,\n groupName: 'code',\n }),\n geometry: region.geometry(),\n scale: 1000,\n maxPixels: 1e8\n});\n\n// Print the resultant Dictionary.\nprint(means);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a region representing the United States\nregion = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017').filter(\n ee.Filter.eq('country_na', 'United States')\n)\n\n# Load MODIS land cover categories in 2001.\nlandcover = ee.Image('MODIS/051/MCD12Q1/2001_01_01').select(\n # Select the IGBP classification band.\n 'Land_Cover_Type_1'\n)\n\n# Load nightlights image inputs.\nnl_2001 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F152001').select(\n 'stable_lights'\n)\nnl_2012 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182012').select(\n 'stable_lights'\n)\n\n# Compute the nightlights decadal difference, add land cover codes.\nnl_diff = nl_2012.subtract(nl_2001).addBands(landcover)\n\n# Grouped a mean reducer: change of nightlights by land cover category.\nmeans = nl_diff.reduceRegion(\n reducer=ee.Reducer.mean().group(groupField=1, groupName='code'),\n geometry=region.geometry(),\n scale=1000,\n maxPixels=1e8,\n)\n\n# Print the resultant Dictionary.\ndisplay(means)\n```\n\nNote that in this example, the `groupField` is the index of the band\ncontaining the zones by which to group the output. The first band is index 0, the second\nis index 1, etc."]]