公告:所有在
2025 年 4 月 15 日之前注册使用 Earth Engine 的非商业项目都必须
验证是否符合非商业性质的资格条件,才能继续使用 Earth Engine。
ee.Geometry.LinearRing.convexHull
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
返回给定几何图形的凸包。单个点的凸包是该点本身,共线点的凸包是一条线,而其他任何点的凸包都是一个多边形。请注意,如果退化多边形的所有顶点都位于同一条直线上,则会生成线段。
用法 | 返回 |
---|
LinearRing.convexHull(maxError, proj) | 几何图形 |
参数 | 类型 | 详细信息 |
---|
此:geometry | 几何图形 | 计算相应几何图形的凸包。 |
maxError | ErrorMargin,默认值:null | 执行任何必要的重新投影时可容忍的最大误差量。 |
proj | 投影,默认值:null | 执行操作的投影。如果未指定,则操作将在球面坐标系中执行,并且球面上的直线距离将以米为单位。 |
示例
代码编辑器 (JavaScript)
// Define a LinearRing object.
var linearRing = ee.Geometry.LinearRing(
[[-122.091, 37.420],
[-122.085, 37.422],
[-122.080, 37.430]]);
// Apply the convexHull method to the LinearRing object.
var linearRingConvexHull = linearRing.convexHull({'maxError': 1});
// Print the result to the console.
print('linearRing.convexHull(...) =', linearRingConvexHull);
// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(linearRing,
{'color': 'black'},
'Geometry [black]: linearRing');
Map.addLayer(linearRingConvexHull,
{'color': 'red'},
'Result [red]: linearRing.convexHull');
Python 设置
如需了解 Python API 和如何使用 geemap
进行交互式开发,请参阅
Python 环境页面。
import ee
import geemap.core as geemap
Colab (Python)
# Define a LinearRing object.
linearring = ee.Geometry.LinearRing(
[[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]
)
# Apply the convexHull method to the LinearRing object.
linearring_convex_hull = linearring.convexHull(maxError=1)
# Print the result.
display('linearring.convexHull(...) =', linearring_convex_hull)
# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')
m.add_layer(
linearring_convex_hull,
{'color': 'red'},
'Result [red]: linearring.convexHull',
)
m
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-07-26。
[null,null,["最后更新时间 (UTC):2025-07-26。"],[[["\u003cp\u003e\u003ccode\u003econvexHull()\u003c/code\u003e returns the smallest convex Geometry that encloses the input geometry, which can be a point, line, or polygon.\u003c/p\u003e\n"],["\u003cp\u003eThe returned geometry can be a point, line segment, or polygon depending on the input geometry's structure and arrangement of vertices.\u003c/p\u003e\n"],["\u003cp\u003eOptional parameters \u003ccode\u003emaxError\u003c/code\u003e and \u003ccode\u003eproj\u003c/code\u003e can be specified to control reprojection error and the projection used for the calculation.\u003c/p\u003e\n"],["\u003cp\u003eFor collinear points, the convex hull is a line segment representing the shortest line containing all points, while for a single point, it's the point itself.\u003c/p\u003e\n"]]],[],null,["# ee.Geometry.LinearRing.convexHull\n\nReturns the convex hull of the given geometry. The convex hull of a single point is the point itself, the convex hull of collinear points is a line, and the convex hull of everything else is a polygon. Note that a degenerate polygon with all vertices on the same line will result in a line segment.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------|----------|\n| LinearRing.convexHull`(`*maxError* `, `*proj*`)` | Geometry |\n\n| Argument | Type | Details |\n|------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `geometry` | Geometry | Calculates the convex hull of this geometry. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |\n| `proj` | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a LinearRing object.\nvar linearRing = ee.Geometry.LinearRing(\n [[-122.091, 37.420],\n [-122.085, 37.422],\n [-122.080, 37.430]]);\n\n// Apply the convexHull method to the LinearRing object.\nvar linearRingConvexHull = linearRing.convexHull({'maxError': 1});\n\n// Print the result to the console.\nprint('linearRing.convexHull(...) =', linearRingConvexHull);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(linearRing,\n {'color': 'black'},\n 'Geometry [black]: linearRing');\nMap.addLayer(linearRingConvexHull,\n {'color': 'red'},\n 'Result [red]: linearRing.convexHull');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a LinearRing object.\nlinearring = ee.Geometry.LinearRing(\n [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]\n)\n\n# Apply the convexHull method to the LinearRing object.\nlinearring_convex_hull = linearring.convexHull(maxError=1)\n\n# Print the result.\ndisplay('linearring.convexHull(...) =', linearring_convex_hull)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')\nm.add_layer(\n linearring_convex_hull,\n {'color': 'red'},\n 'Result [red]: linearring.convexHull',\n)\nm\n```"]]