Usage | Returns |
---|---|
ConfusionMatrix.kappa() | Float |
Argument | Type | Details |
---|---|---|
this: confusionMatrix | ConfusionMatrix |
Examples
Code Editor (JavaScript)
// Construct a confusion matrix from an array (rows are actual values, // columns are predicted values). We construct a confusion matrix here for // brevity and clear visualization, in most applications the confusion matrix // will be generated from ee.Classifier.confusionMatrix. var array = ee.Array([[32, 0, 0, 0, 1, 0], [ 0, 5, 0, 0, 1, 0], [ 0, 0, 1, 3, 0, 0], [ 0, 1, 4, 26, 8, 0], [ 0, 0, 0, 7, 15, 0], [ 0, 0, 0, 1, 0, 5]]); var confusionMatrix = ee.ConfusionMatrix(array); print("Constructed confusion matrix", confusionMatrix); // Calculate overall accuracy. print("Overall accuracy", confusionMatrix.accuracy()); // Calculate consumer's accuracy, also known as user's accuracy or // specificity and the complement of commission error (1 − commission error). print("Consumer's accuracy", confusionMatrix.consumersAccuracy()); // Calculate producer's accuracy, also known as sensitivity and the // compliment of omission error (1 − omission error). print("Producer's accuracy", confusionMatrix.producersAccuracy()); // Calculate kappa statistic. print('Kappa statistic', confusionMatrix.kappa());
import ee import geemap.core as geemap
Colab (Python)
from pprint import pprint # Construct a confusion matrix from an array (rows are actual values, # columns are predicted values). We construct a confusion matrix here for # brevity and clear visualization, in most applications the confusion matrix # will be generated from ee.Classifier.confusionMatrix. array = ee.Array([[32, 0, 0, 0, 1, 0], [ 0, 5, 0, 0, 1, 0], [ 0, 0, 1, 3, 0, 0], [ 0, 1, 4, 26, 8, 0], [ 0, 0, 0, 7, 15, 0], [ 0, 0, 0, 1, 0, 5]]) confusion_matrix = ee.ConfusionMatrix(array) print("Constructed confusion matrix:") pprint(confusion_matrix.getInfo()) # Calculate overall accuracy. print("Overall accuracy:", confusion_matrix.accuracy().getInfo()) # Calculate consumer's accuracy, also known as user's accuracy or # specificity and the complement of commission error (1 − commission error). print("Consumer's accuracy:") pprint(confusion_matrix.consumersAccuracy().getInfo()) # Calculate producer's accuracy, also known as sensitivity and the # compliment of omission error (1 − omission error). print("Producer's accuracy:") pprint(confusion_matrix.producersAccuracy().getInfo()) # Calculate kappa statistic. print("Kappa statistic:", confusion_matrix.kappa().getInfo())