Each input tuple will have values for the independent variables followed by the dependent variables.
The first output is a coefficients array with dimensions (numX, numY); each column contains the coefficients for the corresponding dependent variable. The second is a vector of the root mean square of the residuals of each dependent variable. Both outputs are null if the system is underdetermined, e.g., the number of inputs is less than numX.
Usage | Returns |
---|---|
ee.Reducer.robustLinearRegression(numX, numY, beta) | Reducer |
Argument | Type | Details |
---|---|---|
numX | Integer | The number of input dimensions. |
numY | Integer, default: 1 | The number of output dimensions. |
beta | Float, default: null | Residual error outlier margin. If null, a default value will be computed. |