ee.Image.arrayFlatten

Converts a single-band image of equal-shape multidimensional pixels to an image of scalar pixels, with one band for each element of the array.

UsageReturns
Image.arrayFlatten(coordinateLabels, separator)Image
ArgumentTypeDetails
this: imageImageImage of multidimensional pixels to flatten.
coordinateLabelsListName of each position along each axis. For example, 2x2 arrays with axes meaning 'day' and 'color' could have labels like [['monday', 'tuesday'], ['red', 'green']], resulting in band names'monday_red', 'monday_green', 'tuesday_red', and 'tuesday_green'.
separatorString, default: "_"Separator between array labels in each band name.

Examples

Code Editor (JavaScript)

// A function to print arrays for a selected pixel in the following examples.
function sampArrImg(arrImg) {
  var point = ee.Geometry.Point([-121, 42]);
  return arrImg.sample(point, 500).first().get('array');
}

// A 1D array image.
var arrayImg1D = ee.Image([0, 1, 2]).toArray();
print('1D array image (pixel)', sampArrImg(arrayImg1D));
// [0, 1, 2]

// Define image band names for a 1D array image with 3 rows. You are labeling
// all rows and columns using a list of lists; the 1st sub list defines labels
// for array rows and the 2nd (if applicable) defines labels for array columns.
var bandNames1D = [['row0', 'row1', 'row2']];

// Flatten the 1D array image into an image with n bands equal to all
// combinations of rows and columns. Here, we have 3 rows and 0 columns,
// so the result will be a 3-band image.
var imgFrom1Darray = arrayImg1D.arrayFlatten(bandNames1D);
print('Image from 1D array', imgFrom1Darray);

// Make a 2D array image by repeating the 1D array on 2-axis.
var arrayImg2D = arrayImg1D.arrayRepeat(1, 2);
print('2D array image (pixel)', sampArrImg(arrayImg2D));
// [[0, 0],
//  [1, 1],
//  [2, 2]]

// Define image band names for a 2D array image with 3 rows and 2 columns.
// Recall that you are labeling all rows and columns using a list of lists;
// The 1st sub list defines labels for array rows and the 2nd (if applicable)
// defines labels for array columns.
var bandNames2D = [['row0', 'row1', 'row2'], ['col0', 'col1']];

// Flatten the 2D array image into an image with n bands equal to all
// combinations of rows and columns. Here, we have 3 rows and 2 columns,
// so the result will be a 6-band image.
var imgFrom2Darray = arrayImg2D.arrayFlatten(bandNames2D);
print('Image from 2D array', imgFrom2Darray);

Python setup

See the Python Environment page for information on the Python API and using geemap for interactive development.

import ee
import geemap.core as geemap

Colab (Python)

# A function to print arrays for a selected pixel in the following examples.
def samp_arr_img(arr_img):
  point = ee.Geometry.Point([-121, 42])
  return arr_img.sample(point, 500).first().get('array')

# A 1D array image.
array_img_1d = ee.Image([0, 1, 2]).toArray()
print('1D array image (pixel):', samp_arr_img(array_img_1d).getInfo())
# [0, 1, 2]

# Define image band names for a 1D array image with 3 rows. You are labeling
# all rows and columns using a list of lists; the 1st sub list defines labels
# for array rows and the 2nd (if applicable) defines labels for array columns.
band_names_1d = [['row0', 'row1', 'row2']]

# Flatten the 1D array image into an image with n bands equal to all
# combinations of rows and columns. Here, we have 3 rows and 0 columns,
# so the result will be a 3-band image.
img_from_1d_array = array_img_1d.arrayFlatten(band_names_1d)
print('Image from 1D array:', img_from_1d_array.getInfo())

# Make a 2D array image by repeating the 1D array on 2-axis.
array_img_2d = array_img_1d.arrayRepeat(1, 2)
print('2D array image (pixel):', samp_arr_img(array_img_2d).getInfo())
# [[0, 0],
#  [1, 1],
#  [2, 2]]

# Define image band names for a 2D array image with 3 rows and 2 columns.
# Recall that you are labeling all rows and columns using a list of lists;
# The 1st sub list defines labels for array rows and the 2nd (if applicable)
# defines labels for array columns.
band_names_2d = [['row0', 'row1', 'row2'], ['col0', 'col1']]

# Flatten the 2D array image into an image with n bands equal to all
# combinations of rows and columns. Here, we have 3 rows and 2 columns,
# so the result will be a 6-band image.
img_from_2d_array = array_img_2d.arrayFlatten(band_names_2d)
print('Image from 2D array:', img_from_2d_array.getInfo())