公告:所有在
2025 年 4 月 15 日之前注册使用 Earth Engine 的非商业项目都必须
验证是否符合非商业性质的资格条件,才能继续使用 Earth Engine。
ee.Kernel.manhattan
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
基于直线(曼哈顿)距离生成距离核。
用法 | 返回 |
---|
ee.Kernel.manhattan(radius, units, normalize, magnitude) | 内核 |
参数 | 类型 | 详细信息 |
---|
radius | 浮点数 | 要生成的内核的半径。 |
units | 字符串,默认值:“pixels” | 内核的测量系统(“像素”或“米”)。如果以米为单位指定了内核,则当缩放级别发生变化时,内核会调整大小。 |
normalize | 布尔值,默认值:false | 将内核值归一化为总和为 1。 |
magnitude | 浮点数,默认值:1 | 按此量缩放每个值。 |
示例
代码编辑器 (JavaScript)
print('A Manhattan kernel', ee.Kernel.manhattan({radius: 3}));
/**
* Output weights matrix
*
* [6, 5, 4, 3, 4, 5, 6]
* [5, 4, 3, 2, 3, 4, 5]
* [4, 3, 2, 1, 2, 3, 4]
* [3, 2, 1, 0, 1, 2, 3]
* [4, 3, 2, 1, 2, 3, 4]
* [5, 4, 3, 2, 3, 4, 5]
* [6, 5, 4, 3, 4, 5, 6]
*/
Python 设置
如需了解 Python API 和如何使用 geemap
进行交互式开发,请参阅
Python 环境页面。
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
print('A Manhattan kernel:')
pprint(ee.Kernel.manhattan(**{'radius': 3}).getInfo())
# Output weights matrix
# [6, 5, 4, 3, 4, 5, 6]
# [5, 4, 3, 2, 3, 4, 5]
# [4, 3, 2, 1, 2, 3, 4]
# [3, 2, 1, 0, 1, 2, 3]
# [4, 3, 2, 1, 2, 3, 4]
# [5, 4, 3, 2, 3, 4, 5]
# [6, 5, 4, 3, 4, 5, 6]
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-07-26。
[null,null,["最后更新时间 (UTC):2025-07-26。"],[[["\u003cp\u003eGenerates a distance kernel based on the rectilinear (city-block) distance, also known as the Manhattan distance.\u003c/p\u003e\n"],["\u003cp\u003eThe kernel can be customized using parameters such as radius, units (pixels or meters), normalization, and magnitude scaling.\u003c/p\u003e\n"],["\u003cp\u003eBy default, the kernel uses pixels as units and is not normalized, with a magnitude of 1.\u003c/p\u003e\n"],["\u003cp\u003eThe output is a square matrix of weights representing the distances from the center pixel, as illustrated in the provided examples.\u003c/p\u003e\n"],["\u003cp\u003eThis kernel is commonly used in image processing for operations like edge detection and feature extraction, where rectilinear distances are relevant.\u003c/p\u003e\n"]]],["This tool generates a rectilinear (city-block) distance kernel using `ee.Kernel.manhattan`. Key actions involve setting the `radius`, specifying `units` as pixels or meters, and optionally `normalize` the kernel to sum to 1, and `magnitude` to scale each value. The kernel's output is a matrix, where each cell's value represents its distance.\n"],null,["# ee.Kernel.manhattan\n\nGenerates a distance kernel based on rectilinear (city-block) distance.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------------------------------|---------|\n| `ee.Kernel.manhattan(radius, `*units* `, `*normalize* `, `*magnitude*`)` | Kernel |\n\n| Argument | Type | Details |\n|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `radius` | Float | The radius of the kernel to generate. |\n| `units` | String, default: \"pixels\" | The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed. |\n| `normalize` | Boolean, default: false | Normalize the kernel values to sum to 1. |\n| `magnitude` | Float, default: 1 | Scale each value by this amount. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\nprint('A Manhattan kernel', ee.Kernel.manhattan({radius: 3}));\n\n/**\n * Output weights matrix\n *\n * [6, 5, 4, 3, 4, 5, 6]\n * [5, 4, 3, 2, 3, 4, 5]\n * [4, 3, 2, 1, 2, 3, 4]\n * [3, 2, 1, 0, 1, 2, 3]\n * [4, 3, 2, 1, 2, 3, 4]\n * [5, 4, 3, 2, 3, 4, 5]\n * [6, 5, 4, 3, 4, 5, 6]\n */\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\nprint('A Manhattan kernel:')\npprint(ee.Kernel.manhattan(**{'radius': 3}).getInfo())\n\n# Output weights matrix\n\n# [6, 5, 4, 3, 4, 5, 6]\n# [5, 4, 3, 2, 3, 4, 5]\n# [4, 3, 2, 1, 2, 3, 4]\n# [3, 2, 1, 0, 1, 2, 3]\n# [4, 3, 2, 1, 2, 3, 4]\n# [5, 4, 3, 2, 3, 4, 5]\n# [6, 5, 4, 3, 4, 5, 6]\n```"]]