ee.Classifier.smileKNN

创建空的 k-NN 分类器。

k 最近邻算法 (k-NN) 是一种通过邻居的多数表决对对象进行分类的方法,其中对象被分配到其 k 个最近邻中最常见的类别(k 是一个正整数,通常很小,通常为奇数)。

用法返回
ee.Classifier.smileKNN(k, searchMethod, metric)分类器
参数类型详细信息
k整数,默认值:1用于分类的邻数量。
searchMethod字符串,默认值:“AUTO”搜索方法。以下是有效值 [AUTO, LINEAR_SEARCH, KD_TREE, COVER_TREE]。 AUTO 将根据维度数量在 KD_TREE 和 COVER_TREE 之间进行选择。对于距离相同和概率值相同的情况,不同搜索方法的结果可能会有所不同。由于性能和结果可能会有所不同,请参阅 SMILE 的文档和其他文献。
metric字符串,默认值:“EUCLIDEAN”要使用的距离指标。注意:KD_TREE(以及低维度的 AUTO)不会使用所选的指标。选项包括:   “EUCLIDEAN” - 欧几里得距离。   'MAHALANOBIS' - 马氏距离。   “MANHATTAN” - 曼哈顿距离。   “BRAYCURTIS” - Bray-Curtis 距离。

示例

代码编辑器 (JavaScript)

// Cloud masking for Landsat 8.
function maskL8sr(image) {
  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
  var saturationMask = image.select('QA_RADSAT').eq(0);

  // Apply the scaling factors to the appropriate bands.
  var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
  var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);

  // Replace the original bands with the scaled ones and apply the masks.
  return image.addBands(opticalBands, null, true)
      .addBands(thermalBands, null, true)
      .updateMask(qaMask)
      .updateMask(saturationMask);
}

// Map the function over one year of data.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
                     .filterDate('2020-01-01', '2021-01-01')
                     .map(maskL8sr);

// Make a median composite.
var composite = collection.median();

// Demonstration labels.
var labels = ee.FeatureCollection('projects/google/demo_landcover_labels')

// Use these bands for classification.
var bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'];
// The name of the property on the points storing the class label.
var classProperty = 'landcover';

// Sample the composite to generate training data.  Note that the
// class label is stored in the 'landcover' property.
var training = composite.select(bands).sampleRegions(
    {collection: labels, properties: [classProperty], scale: 30});

// Train a kNN classifier.
var classifier = ee.Classifier.smileKNN(5).train({
  features: training,
  classProperty: classProperty,
});

// Classify the composite.
var classified = composite.classify(classifier);
Map.setCenter(-122.184, 37.796, 12);
Map.addLayer(classified, {min: 0, max: 2, palette: ['red', 'green', 'blue']});

Python 设置

如需了解 Python API 和如何使用 geemap 进行交互式开发,请参阅 Python 环境页面。

import ee
import geemap.core as geemap

Colab (Python)

# Cloud masking for Landsat 8.
def mask_l8_sr(image):
  qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)
  saturation_mask = image.select('QA_RADSAT').eq(0)

  # Apply the scaling factors to the appropriate bands.
  optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)
  thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)

  # Replace the original bands with the scaled ones and apply the masks.
  return (
      image.addBands(optical_bands, None, True)
      .addBands(thermal_bands, None, True)
      .updateMask(qa_mask)
      .updateMask(saturation_mask)
  )


# Map the function over one year of data.
collection = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
    .filterDate('2020-01-01', '2021-01-01')
    .map(mask_l8_sr)
)

# Make a median composite.
composite = collection.median()

# Demonstration labels.
labels = ee.FeatureCollection('projects/google/demo_landcover_labels')

# Use these bands for classification.
bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']
# The name of the property on the points storing the class label.
class_property = 'landcover'

# Sample the composite to generate training data.  Note that the
# class label is stored in the 'landcover' property.
training = composite.select(bands).sampleRegions(
    collection=labels, properties=[class_property], scale=30
)

# Train a kNN classifier.
classifier = ee.Classifier.smileKNN(5).train(
    features=training, classProperty=class_property
)

# Classify the composite.
classified = composite.classify(classifier)

m = geemap.Map()
m.set_center(-122.184, 37.796, 12)
m.add_layer(
    classified, {'min': 0, 'max': 2, 'palette': ['red', 'green', 'blue']}
)
m