Code Editor (JavaScript)
// A Landsat 8 surface reflectance image.
var image = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')
.select(['SR_B.']); // reflectance bands
// A region of interest.
var region = ee.Geometry.BBox(-122.24, 37.13, -122.11, 37.20);
// Set the export "scale" and "crs" parameters.
Export.image.toAsset({
image: image,
description: 'image_export',
assetId: 'projects/<project-name>/assets/<asset-name>', // <> modify these
region: region,
scale: 30,
crs: 'EPSG:5070'
});
// Use the "crsTransform" export parameter instead of "scale" for more control
// over the output grid. Here, "crsTransform" is set to align the output grid
// with the grid of another dataset. To view an image's CRS transform:
// print(image.projection())
Export.image.toAsset({
image: image,
description: 'image_export_crstransform',
assetId: 'projects/<project-name>/assets/<asset-name>', // <> modify these
region: region,
crsTransform: [30, 0, -2493045, 0, -30, 3310005],
crs: 'EPSG:5070'
});
// If the export has more than 1e8 pixels, set "maxPixels" higher.
Export.image.toAsset({
image: image,
description: 'image_export_maxpixels',
assetId: 'projects/<project-name>/assets/<asset-name>', // <> modify these
region: region,
scale: 30,
crs: 'EPSG:5070',
maxPixels: 1e13
});
// The default "pyramidingPolicy" is mean. If data are categorical,
// consider mode.
Export.image.toAsset({
image: image.select('SR_B5'),
description: 'image_export_pyramiding',
assetId: 'projects/<project-name>/assets/<asset-name>', // <> modify these
region: region,
scale: 30,
crs: 'EPSG:5070',
pyramidingPolicy: {SR_B5: 'mode'}
});
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# A Landsat 8 surface reflectance image.
image = ee.Image(
'LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508'
).select(['SR_B.']) # reflectance bands
# A region of interest.
region = ee.Geometry.BBox(-122.24, 37.13, -122.11, 37.20)
# Set the export "scale" and "crs" parameters.
task = ee.batch.Export.image.toAsset(
image=image,
description='image_export',
assetId='projects/<project-name>/assets/<asset-name>', # <> modify these
region=region,
scale=30,
crs='EPSG:5070'
)
task.start()
# Use the "crsTransform" export parameter instead of "scale" for more control
# over the output grid. Here, "crsTransform" is set to align the output grid
# with the grid of another dataset. To view an image's CRS transform:
# print(image.projection().getInfo())
task = ee.batch.Export.image.toAsset(
image=image,
description='image_export_crstransform',
assetId='projects/<project-name>/assets/<asset-name>', # <> modify these
region=region,
crsTransform=[30, 0, -2493045, 0, -30, 3310005],
crs='EPSG:5070'
)
task.start()
# If the export has more than 1e8 pixels, set "maxPixels" higher.
task = ee.batch.Export.image.toAsset(
image=image,
description='image_export_maxpixels',
assetId='projects/<project-name>/assets/<asset-name>', # <> modify these
region=region,
scale=30,
crs='EPSG:5070',
maxPixels=1e13
)
task.start()
# The default "pyramidingPolicy" is mean. If data are categorical,
# consider mode.
task = ee.batch.Export.image.toAsset(
image=image.select('SR_B5'),
description='image_export_pyramiding',
assetId='projects/<project-name>/assets/<asset-name>', # <> modify these
region=region,
scale=30,
crs='EPSG:5070',
pyramidingPolicy={'SR_B5': 'mode'}
)
task.start()