公告:所有在
2025 年 4 月 15 日之前注册使用 Earth Engine 的非商业项目都必须
验证是否符合非商业性质的资格条件,才能继续使用 Earth Engine。
ee.FeatureCollection.cluster
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
对集合中的每个特征进行聚类,并为每个特征添加一个新列,其中包含已分配的聚类编号。
用法 | 返回 |
---|
FeatureCollection.cluster(clusterer, outputName) | FeatureCollection |
参数 | 类型 | 详细信息 |
---|
此:features | FeatureCollection | 要聚类的特征集合。每个特征都必须包含聚类器架构中的所有属性。 |
clusterer | 聚类器 | 要使用的聚类器。 |
outputName | 字符串,默认值:“cluster” | 要添加的输出属性的名称。 |
示例
代码编辑器 (JavaScript)
// Import a Sentinel-2 surface reflectance image.
var image = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG');
// Get the image geometry to define the geographical bounds of a point sample.
var imageBounds = image.geometry();
// Sample the image at a set of random points; a feature collection is returned.
var pointSampleFc = image.sample(
{region: imageBounds, scale: 20, numPixels: 1000, geometries: true});
// Instantiate a k-means clusterer and train it.
var clusterer = ee.Clusterer.wekaKMeans(5).train(pointSampleFc);
// Cluster the input using the trained clusterer; optionally specify the name
// of the output cluster ID property.
var clusteredFc = pointSampleFc.cluster(clusterer, 'spectral_cluster');
print('Note added "spectral_cluster" property for an example feature',
clusteredFc.first().toDictionary());
// Visualize the clusters by applying a unique color to each cluster ID.
var palette = ee.List(['8dd3c7', 'ffffb3', 'bebada', 'fb8072', '80b1d3']);
var clusterVis = clusteredFc.map(function(feature) {
return feature.set('style', {
color: palette.get(feature.get('spectral_cluster')),
});
}).style({styleProperty: 'style'});
// Display the points colored by cluster ID with the S2 image.
Map.setCenter(-122.35, 37.47, 9);
Map.addLayer(image, {bands: ['B4', 'B3', 'B2'], min: 0, max: 1500}, 'S2 image');
Map.addLayer(clusterVis, null, 'Clusters');
Python 设置
如需了解 Python API 和如何使用 geemap
进行交互式开发,请参阅
Python 环境页面。
import ee
import geemap.core as geemap
Colab (Python)
# Import a Sentinel-2 surface reflectance image.
image = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')
# Get the image geometry to define the geographical bounds of a point sample.
image_bounds = image.geometry()
# Sample the image at a set of random points a feature collection is returned.
point_sample_fc = image.sample(
region=image_bounds, scale=20, numPixels=1000, geometries=True
)
# Instantiate a k-means clusterer and train it.
clusterer = ee.Clusterer.wekaKMeans(5).train(point_sample_fc)
# Cluster the input using the trained clusterer optionally specify the name
# of the output cluster ID property.
clustered_fc = point_sample_fc.cluster(clusterer, 'spectral_cluster')
display(
'Note added "spectral_cluster" property for an example feature',
clustered_fc.first().toDictionary(),
)
# Visualize the clusters by applying a unique color to each cluster ID.
palette = ee.List(['8dd3c7', 'ffffb3', 'bebada', 'fb8072', '80b1d3'])
cluster_vis = clustered_fc.map(
lambda feature: feature.set(
'style', {'color': palette.get(feature.get('spectral_cluster'))}
)
).style(styleProperty='style')
# Display the points colored by cluster ID with the S2 image.
m = geemap.Map()
m.set_center(-122.35, 37.47, 9)
m.add_layer(
image, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 1500}, 'S2 image'
)
m.add_layer(cluster_vis, None, 'Clusters')
m
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-07-26。
[null,null,["最后更新时间 (UTC):2025-07-26。"],[[["\u003cp\u003eGroups features within a collection into clusters based on a provided clusterer.\u003c/p\u003e\n"],["\u003cp\u003eAssigns each feature a cluster ID, stored in a new property with a user-defined name (defaults to "cluster").\u003c/p\u003e\n"],["\u003cp\u003eRequires a trained clusterer and a FeatureCollection where each feature contains the necessary properties for clustering.\u003c/p\u003e\n"],["\u003cp\u003eReturns a new FeatureCollection with the added cluster ID property.\u003c/p\u003e\n"]]],[],null,["# ee.FeatureCollection.cluster\n\nClusters each feature in a collection, adding a new column to each feature containing the cluster number to which it has been assigned.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------------|-------------------|\n| FeatureCollection.cluster`(clusterer, `*outputName*`)` | FeatureCollection |\n\n| Argument | Type | Details |\n|------------------|----------------------------|----------------------------------------------------------------------------------------------------------------|\n| this: `features` | FeatureCollection | The collection of features to cluster. Each feature must contain all the properties in the clusterer's schema. |\n| `clusterer` | Clusterer | The clusterer to use. |\n| `outputName` | String, default: \"cluster\" | The name of the output property to be added. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Import a Sentinel-2 surface reflectance image.\nvar image = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG');\n\n// Get the image geometry to define the geographical bounds of a point sample.\nvar imageBounds = image.geometry();\n\n// Sample the image at a set of random points; a feature collection is returned.\nvar pointSampleFc = image.sample(\n {region: imageBounds, scale: 20, numPixels: 1000, geometries: true});\n\n// Instantiate a k-means clusterer and train it.\nvar clusterer = ee.Clusterer.wekaKMeans(5).train(pointSampleFc);\n\n// Cluster the input using the trained clusterer; optionally specify the name\n// of the output cluster ID property.\nvar clusteredFc = pointSampleFc.cluster(clusterer, 'spectral_cluster');\n\nprint('Note added \"spectral_cluster\" property for an example feature',\n clusteredFc.first().toDictionary());\n\n// Visualize the clusters by applying a unique color to each cluster ID.\nvar palette = ee.List(['8dd3c7', 'ffffb3', 'bebada', 'fb8072', '80b1d3']);\nvar clusterVis = clusteredFc.map(function(feature) {\n return feature.set('style', {\n color: palette.get(feature.get('spectral_cluster')),\n });\n}).style({styleProperty: 'style'});\n\n// Display the points colored by cluster ID with the S2 image.\nMap.setCenter(-122.35, 37.47, 9);\nMap.addLayer(image, {bands: ['B4', 'B3', 'B2'], min: 0, max: 1500}, 'S2 image');\nMap.addLayer(clusterVis, null, 'Clusters');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Import a Sentinel-2 surface reflectance image.\nimage = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')\n\n# Get the image geometry to define the geographical bounds of a point sample.\nimage_bounds = image.geometry()\n\n# Sample the image at a set of random points a feature collection is returned.\npoint_sample_fc = image.sample(\n region=image_bounds, scale=20, numPixels=1000, geometries=True\n)\n\n# Instantiate a k-means clusterer and train it.\nclusterer = ee.Clusterer.wekaKMeans(5).train(point_sample_fc)\n\n# Cluster the input using the trained clusterer optionally specify the name\n# of the output cluster ID property.\nclustered_fc = point_sample_fc.cluster(clusterer, 'spectral_cluster')\n\ndisplay(\n 'Note added \"spectral_cluster\" property for an example feature',\n clustered_fc.first().toDictionary(),\n)\n\n# Visualize the clusters by applying a unique color to each cluster ID.\npalette = ee.List(['8dd3c7', 'ffffb3', 'bebada', 'fb8072', '80b1d3'])\ncluster_vis = clustered_fc.map(\n lambda feature: feature.set(\n 'style', {'color': palette.get(feature.get('spectral_cluster'))}\n )\n).style(styleProperty='style')\n\n# Display the points colored by cluster ID with the S2 image.\nm = geemap.Map()\nm.set_center(-122.35, 37.47, 9)\nm.add_layer(\n image, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 1500}, 'S2 image'\n)\nm.add_layer(cluster_vis, None, 'Clusters')\nm\n```"]]