公告:所有在
2025 年 4 月 15 日之前注册使用 Earth Engine 的非商业项目都必须
验证是否符合非商业性质的资格条件,才能继续使用 Earth Engine。
ee.Array.eigen
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
计算具有 A 行和 A 列的二维方阵的实特征向量和特征值。返回一个具有 A 行和 A+1 列的数组,其中每行的第一列包含一个特征值,其余 A 列包含相应的特征向量。各行按特征值降序排序。
此实现使用来自 https://ejml.org 的 DecompositionFactory.eig()。
参数 | 类型 | 详细信息 |
---|
此:input | 数组 | 要计算特征值分解的方形二维数组。 |
示例
代码编辑器 (JavaScript)
print(ee.Array([[0, 0], [0, 0]]).eigen()); // [[0,0,1],[0,1,0]]
print(ee.Array([[1, 0], [0, 0]]).eigen()); // [[1,1,0],[0,0,1]]
print(ee.Array([[0, 1], [0, 0]]).eigen()); // [[0,0,1],[0,1,0]]
print(ee.Array([[0, 0], [1, 0]]).eigen()); // [[0,-1,0],[0,0,-1]]
print(ee.Array([[0, 0], [0, 1]]).eigen()); // [[1,0,1],[0,1,0]]
print(ee.Array([[1, 1], [0, 0]]).eigen()); // [[1,1,0],[0,-1/√2,1/√2]]
print(ee.Array([[0, 0], [1, 1]]).eigen()); // [[1,0,-1],[0,-1/√2,1/√2]]]
print(ee.Array([[1, 0], [1, 0]]).eigen()); // [[1,1/√2,1/√2],[0,0,1]]
print(ee.Array([[1, 0], [0, 1]]).eigen()); // [[1,1,0],[1,0,1]]
print(ee.Array([[0, 1], [1, 0]]).eigen()); // [[1,1/√2,1/√2],[-1,1/√2,-1/√2]]
print(ee.Array([[0, 1], [0, 1]]).eigen()); // [[1,1/√2,1/√2],[0,1,0]]
print(ee.Array([[1, 1], [1, 0]]).eigen()); // [[1.62,0.85,0.53],[-0.62,0.53]]
print(ee.Array([[1, 1], [0, 1]]).eigen()); // [[1,0,1],[1,1,0]]
print(ee.Array([[1, 0], [1, 1]]).eigen()); // [[1,-1,0],[1,0,-1]]
// [[1.62,-0.53,-0.85],[-0.62,-0.85,0.53]]
print(ee.Array([[0, 1], [1, 1]]).eigen());
print(ee.Array([[1, 1], [1, 1]]).eigen()); // [[2,1/√2,1/√2],[0,1/√2,-1/√2]]
var matrix = ee.Array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]);
print(matrix.eigen()); // [[1,1,0,0],[1,0,1,0],[1,0,0,1]]
var matrix = ee.Array([
[2, 0, 0],
[0, 3, 0],
[0, 0, 4]]);
print(matrix.eigen()); // [[4,0,0,1],[3,0,1,0],[2,1,0,0]]
matrix = ee.Array([
[1, 0, 0],
[0, 0, 0],
[0, 0, 0]]);
print(matrix.eigen()); // [[1,1,0,0],[0,0,1,0],[0,0,0,1]]
matrix = ee.Array([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]]);
// [[3,-0.58,-0.58,-0.58],[0,0,-1/√2,1/√2],[0,-0.82,0.41,0.41]]
print(matrix.eigen());
Python 设置
如需了解 Python API 和如何使用 geemap
进行交互式开发,请参阅
Python 环境页面。
import ee
import geemap.core as geemap
Colab (Python)
display(ee.Array([[0, 0], [0, 0]]).eigen()) # [[0, 0, 1], [0, 1, 0]]
display(ee.Array([[1, 0], [0, 0]]).eigen()) # [[1, 1, 0], [0,0,1]]
display(ee.Array([[0, 1], [0, 0]]).eigen()) # [[0, 0, 1], [0, 1, 0]]
display(ee.Array([[0, 0], [1, 0]]).eigen()) # [[0, -1, 0], [0, 0, -1]]
display(ee.Array([[0, 0], [0, 1]]).eigen()) # [[1, 0, 1], [0, 1, 0]]
# [[1, 1, 0], [0, -1/√2, 1/√2]]
display(ee.Array([[1, 1], [0, 0]]).eigen())
# [[1, 0, -1], [0, -1/√2, 1/√2]]]
display(ee.Array([[0, 0], [1, 1]]).eigen())
# [[1, 1/√2, 1/√2], [0, 0, 1]]
display(ee.Array([[1, 0], [1, 0]]).eigen())
display(ee.Array([[1, 0], [0, 1]]).eigen()) # [[1, 1, 0], [1, 0, 1]]
# [[1, 1/√2, 1/√2], [-1, 1/√2, -1/√2]]
display(ee.Array([[0, 1], [1, 0]]).eigen())
# [[1, 1/√2, 1/√2], [0, 1, 0]]
display(ee.Array([[0, 1], [0, 1]]).eigen())
# [[1.62, 0.85, 0.53], [-0.62, 0.53]]
display(ee.Array([[1, 1], [1, 0]]).eigen())
display(ee.Array([[1, 1], [0, 1]]).eigen()) # [[1, 0, 1], [1, 1, 0]]
display(ee.Array([[1, 0], [1, 1]]).eigen()) # [[1, -1, 0], [1, 0, -1]]
# [[1.62, -0.53, -0.85], [-0.62, -0.85, 0.53]]
display(ee.Array([[0, 1], [1, 1]]).eigen())
# [[2, 1/√2, 1/√2], [0, 1/√2, -1/√2]]
display(ee.Array([[1, 1], [1, 1]]).eigen())
matrix = ee.Array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
display(matrix.eigen()) # [[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1]]
matrix = ee.Array([
[2, 0, 0],
[0, 3, 0],
[0, 0, 4]])
display(matrix.eigen()) # [[4, 0, 0, 1], [3, 0, 1, 0], [2, 1, 0, 0]]
matrix = ee.Array([
[1, 0, 0],
[0, 0, 0],
[0, 0, 0]])
display(matrix.eigen()) # [[1, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]
matrix = ee.Array([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
# [[3, -0.58, -0.58, -0.58], [0, 0, -1/√2, 1/√2], [0, -0.82, 0.41, 0.41]]
display(matrix.eigen())
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-07-26。
[null,null,["最后更新时间 (UTC):2025-07-26。"],[[["\u003cp\u003eComputes the real eigenvectors and eigenvalues of a 2D square array.\u003c/p\u003e\n"],["\u003cp\u003eReturns an array where each row represents an eigenvalue and its corresponding eigenvector.\u003c/p\u003e\n"],["\u003cp\u003eEigenvalues are sorted in descending order within the output array.\u003c/p\u003e\n"],["\u003cp\u003eUtilizes the \u003ccode\u003eDecompositionFactory.eig()\u003c/code\u003e method from the EJML library for computation.\u003c/p\u003e\n"],["\u003cp\u003eAccepts a single argument: the input 2D square array.\u003c/p\u003e\n"]]],["The `eigen()` function computes the eigenvalues and eigenvectors of a square 2D array. It takes a square 2D array as input and returns a new array where each row represents an eigenvalue and its corresponding eigenvector. The first column of each row contains the eigenvalue, and the remaining columns contain the eigenvector components. The rows are sorted in descending order by eigenvalue. It uses `DecompositionFactory.eig()` for its core calculations.\n"],null,["# ee.Array.eigen\n\nComputes the real eigenvectors and eigenvalues of a square 2D array of A rows and A columns. Returns an array with A rows and A+1 columns, where each row contains an eigenvalue in the first column, and the corresponding eigenvector in the remaining A columns. The rows are sorted by eigenvalue, in descending order.\n\n\u003cbr /\u003e\n\nThis implementation uses DecompositionFactory.eig() from https://ejml.org.\n\n| Usage | Returns |\n|-----------------|---------|\n| Array.eigen`()` | Array |\n\n| Argument | Type | Details |\n|---------------|-------|------------------------------------------------------------------------|\n| this: `input` | Array | A square, 2D array from which to compute the eigenvalue decomposition. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\nprint(ee.Array([[0, 0], [0, 0]]).eigen()); // [[0,0,1],[0,1,0]]\n\nprint(ee.Array([[1, 0], [0, 0]]).eigen()); // [[1,1,0],[0,0,1]]\nprint(ee.Array([[0, 1], [0, 0]]).eigen()); // [[0,0,1],[0,1,0]]\nprint(ee.Array([[0, 0], [1, 0]]).eigen()); // [[0,-1,0],[0,0,-1]]\nprint(ee.Array([[0, 0], [0, 1]]).eigen()); // [[1,0,1],[0,1,0]]\n\nprint(ee.Array([[1, 1], [0, 0]]).eigen()); // [[1,1,0],[0,-1/√2,1/√2]]\nprint(ee.Array([[0, 0], [1, 1]]).eigen()); // [[1,0,-1],[0,-1/√2,1/√2]]]\n\nprint(ee.Array([[1, 0], [1, 0]]).eigen()); // [[1,1/√2,1/√2],[0,0,1]]\nprint(ee.Array([[1, 0], [0, 1]]).eigen()); // [[1,1,0],[1,0,1]]\nprint(ee.Array([[0, 1], [1, 0]]).eigen()); // [[1,1/√2,1/√2],[-1,1/√2,-1/√2]]\nprint(ee.Array([[0, 1], [0, 1]]).eigen()); // [[1,1/√2,1/√2],[0,1,0]]\n\nprint(ee.Array([[1, 1], [1, 0]]).eigen()); // [[1.62,0.85,0.53],[-0.62,0.53]]\nprint(ee.Array([[1, 1], [0, 1]]).eigen()); // [[1,0,1],[1,1,0]]\nprint(ee.Array([[1, 0], [1, 1]]).eigen()); // [[1,-1,0],[1,0,-1]]\n// [[1.62,-0.53,-0.85],[-0.62,-0.85,0.53]]\nprint(ee.Array([[0, 1], [1, 1]]).eigen());\n\nprint(ee.Array([[1, 1], [1, 1]]).eigen()); // [[2,1/√2,1/√2],[0,1/√2,-1/√2]]\n\nvar matrix = ee.Array([\n [1, 0, 0],\n [0, 1, 0],\n [0, 0, 1]]);\nprint(matrix.eigen()); // [[1,1,0,0],[1,0,1,0],[1,0,0,1]]\n\nvar matrix = ee.Array([\n [2, 0, 0],\n [0, 3, 0],\n [0, 0, 4]]);\nprint(matrix.eigen()); // [[4,0,0,1],[3,0,1,0],[2,1,0,0]]\n\nmatrix = ee.Array([\n [1, 0, 0],\n [0, 0, 0],\n [0, 0, 0]]);\nprint(matrix.eigen()); // [[1,1,0,0],[0,0,1,0],[0,0,0,1]]\n\nmatrix = ee.Array([\n [1, 1, 1],\n [1, 1, 1],\n [1, 1, 1]]);\n// [[3,-0.58,-0.58,-0.58],[0,0,-1/√2,1/√2],[0,-0.82,0.41,0.41]]\nprint(matrix.eigen());\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\ndisplay(ee.Array([[0, 0], [0, 0]]).eigen()) # [[0, 0, 1], [0, 1, 0]]\n\ndisplay(ee.Array([[1, 0], [0, 0]]).eigen()) # [[1, 1, 0], [0,0,1]]\ndisplay(ee.Array([[0, 1], [0, 0]]).eigen()) # [[0, 0, 1], [0, 1, 0]]\ndisplay(ee.Array([[0, 0], [1, 0]]).eigen()) # [[0, -1, 0], [0, 0, -1]]\ndisplay(ee.Array([[0, 0], [0, 1]]).eigen()) # [[1, 0, 1], [0, 1, 0]]\n\n# [[1, 1, 0], [0, -1/√2, 1/√2]]\ndisplay(ee.Array([[1, 1], [0, 0]]).eigen())\n\n# [[1, 0, -1], [0, -1/√2, 1/√2]]]\ndisplay(ee.Array([[0, 0], [1, 1]]).eigen())\n\n# [[1, 1/√2, 1/√2], [0, 0, 1]]\ndisplay(ee.Array([[1, 0], [1, 0]]).eigen())\ndisplay(ee.Array([[1, 0], [0, 1]]).eigen()) # [[1, 1, 0], [1, 0, 1]]\n\n# [[1, 1/√2, 1/√2], [-1, 1/√2, -1/√2]]\ndisplay(ee.Array([[0, 1], [1, 0]]).eigen())\n\n# [[1, 1/√2, 1/√2], [0, 1, 0]]\ndisplay(ee.Array([[0, 1], [0, 1]]).eigen())\n\n# [[1.62, 0.85, 0.53], [-0.62, 0.53]]\ndisplay(ee.Array([[1, 1], [1, 0]]).eigen())\ndisplay(ee.Array([[1, 1], [0, 1]]).eigen()) # [[1, 0, 1], [1, 1, 0]]\ndisplay(ee.Array([[1, 0], [1, 1]]).eigen()) # [[1, -1, 0], [1, 0, -1]]\n\n# [[1.62, -0.53, -0.85], [-0.62, -0.85, 0.53]]\ndisplay(ee.Array([[0, 1], [1, 1]]).eigen())\n\n# [[2, 1/√2, 1/√2], [0, 1/√2, -1/√2]]\ndisplay(ee.Array([[1, 1], [1, 1]]).eigen())\n\nmatrix = ee.Array([\n [1, 0, 0],\n [0, 1, 0],\n [0, 0, 1]])\ndisplay(matrix.eigen()) # [[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1]]\n\nmatrix = ee.Array([\n [2, 0, 0],\n [0, 3, 0],\n [0, 0, 4]])\ndisplay(matrix.eigen()) # [[4, 0, 0, 1], [3, 0, 1, 0], [2, 1, 0, 0]]\n\nmatrix = ee.Array([\n [1, 0, 0],\n [0, 0, 0],\n [0, 0, 0]])\ndisplay(matrix.eigen()) # [[1, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]\n\nmatrix = ee.Array([\n [1, 1, 1],\n [1, 1, 1],\n [1, 1, 1]])\n# [[3, -0.58, -0.58, -0.58], [0, 0, -1/√2, 1/√2], [0, -0.82, 0.41, 0.41]]\ndisplay(matrix.eigen())\n```"]]