公告:所有在
2025 年 4 月 15 日之前注册使用 Earth Engine 的非商业项目都必须
验证是否符合非商业性质的资格条件,才能继续使用 Earth Engine。
ee.FeatureCollection.runBigQuery
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
运行 BigQuery 查询,提取结果并将其显示为 FeatureCollection。
用法 | 返回 |
---|
ee.FeatureCollection.runBigQuery(query, geometryColumn, maxBytesBilled) | FeatureCollection |
参数 | 类型 | 详细信息 |
---|
query | 字符串 | 要在 BigQuery 资源上执行的 GoogleSQL 查询。 |
geometryColumn | 字符串,默认值:null | 要用作主要地图项几何图形的列的名称。如果未指定,系统会使用第一个几何图形列。 |
maxBytesBilled | 长整数,默认值:100000000000 | 处理查询时计费的字节数上限。任何超出此限制的 BigQuery 作业都将失败,并且不会产生费用。 |
示例
Code Editor (JavaScript)
// Get places from Overture Maps Dataset in BigQuery public data.
Map.setCenter(-3.69, 40.41, 12)
var mapGeometry= ee.Geometry(Map.getBounds(true)).toGeoJSONString();
var sql =
"SELECT geometry, names.primary as name, categories.primary as category "
+ " FROM bigquery-public-data.overture_maps.place "
+ " WHERE ST_INTERSECTS(geometry, ST_GEOGFROMGEOJSON('" + mapGeometry+ "'))";
var features = ee.FeatureCollection.runBigQuery({
query: sql,
geometryColumn: 'geometry'
});
// Display all relevant features on the map.
Map.addLayer(features,
{'color': 'black'},
'Places from Overture Maps Dataset');
// Create a histogram of the categories and print it.
var propertyOfInterest = 'category';
var histogram = features.filter(ee.Filter.notNull([propertyOfInterest]))
.aggregate_histogram(propertyOfInterest);
print(histogram);
// Create a frequency chart for the histogram.
var categories = histogram.keys().map(function(k) {
return ee.Feature(null, {
key: k,
value: histogram.get(k)
});
});
var sortedCategories = ee.FeatureCollection(categories).sort('value', false);
print(ui.Chart.feature.byFeature(sortedCategories).setChartType('Table'));
Python 设置
如需了解 Python API 以及如何使用 geemap
进行交互式开发,请参阅
Python 环境页面。
import ee
import geemap.core as geemap
Colab (Python)
import json
import pandas as pd
# Get places from Overture Maps Dataset in BigQuery public data.
location = ee.Geometry.Point(-3.69, 40.41)
map_geometry = json.dumps(location.buffer(5e3).getInfo())
sql = f"""SELECT geometry, names.primary as name, categories.primary as category
FROM bigquery-public-data.overture_maps.place
WHERE ST_INTERSECTS(geometry, ST_GEOGFROMGEOJSON('{map_geometry}'))"""
features = ee.FeatureCollection.runBigQuery(
query=sql, geometryColumn="geometry"
)
# Display all relevant features on the map.
m = geemap.Map()
m.center_object(location, 13)
m.add_layer(features, {'color': 'black'}, 'Places from Overture Maps Dataset')
display(m)
# Create a histogram of the place categories.
property_of_interest = 'category'
histogram = (
features.filter(
ee.Filter.notNull([property_of_interest])
).aggregate_histogram(property_of_interest)
).getInfo()
# Display the histogram as a pandas DataFrame.
df = pd.DataFrame(list(histogram.items()), columns=['category', 'frequency'])
df = df.sort_values(by=['frequency'], ascending=False, ignore_index=True)
display(df)
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-07-25。
[null,null,["最后更新时间 (UTC):2025-07-25。"],[],[],null,["# ee.FeatureCollection.runBigQuery\n\nRuns a BigQuery query, fetches the results and presents the them as a FeatureCollection.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|------------------------------------------------------------------------------------|-------------------|\n| `ee.FeatureCollection.runBigQuery(query, `*geometryColumn* `, `*maxBytesBilled*`)` | FeatureCollection |\n\n| Argument | Type | Details |\n|------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------|\n| `query` | String | GoogleSQL query to perform on the BigQuery resources. |\n| `geometryColumn` | String, default: null | The name of the column to use as the main feature geometry. If not specified, the first geometry column will be used. |\n| `maxBytesBilled` | Long, default: 100000000000 | Maximum number of bytes billed while processing the query. Any BigQuery job that exceeds this limit will fail and won't be billed. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Get places from Overture Maps Dataset in BigQuery public data.\nMap.setCenter(-3.69, 40.41, 12)\nvar mapGeometry= ee.Geometry(Map.getBounds(true)).toGeoJSONString();\nvar sql =\n \"SELECT geometry, names.primary as name, categories.primary as category \"\n + \" FROM bigquery-public-data.overture_maps.place \"\n + \" WHERE ST_INTERSECTS(geometry, ST_GEOGFROMGEOJSON('\" + mapGeometry+ \"'))\";\n\nvar features = ee.FeatureCollection.runBigQuery({\n query: sql,\n geometryColumn: 'geometry'\n});\n\n// Display all relevant features on the map.\nMap.addLayer(features,\n {'color': 'black'},\n 'Places from Overture Maps Dataset');\n\n\n// Create a histogram of the categories and print it.\nvar propertyOfInterest = 'category';\nvar histogram = features.filter(ee.Filter.notNull([propertyOfInterest]))\n .aggregate_histogram(propertyOfInterest);\nprint(histogram);\n\n// Create a frequency chart for the histogram.\nvar categories = histogram.keys().map(function(k) {\n return ee.Feature(null, {\n key: k,\n value: histogram.get(k)\n });\n});\nvar sortedCategories = ee.FeatureCollection(categories).sort('value', false);\nprint(ui.Chart.feature.byFeature(sortedCategories).setChartType('Table'));\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nimport json\nimport pandas as pd\n\n# Get places from Overture Maps Dataset in BigQuery public data.\nlocation = ee.Geometry.Point(-3.69, 40.41)\nmap_geometry = json.dumps(location.buffer(5e3).getInfo())\n\nsql = f\"\"\"SELECT geometry, names.primary as name, categories.primary as category\nFROM bigquery-public-data.overture_maps.place\nWHERE ST_INTERSECTS(geometry, ST_GEOGFROMGEOJSON('{map_geometry}'))\"\"\"\n\nfeatures = ee.FeatureCollection.runBigQuery(\n query=sql, geometryColumn=\"geometry\"\n)\n\n# Display all relevant features on the map.\nm = geemap.Map()\nm.center_object(location, 13)\nm.add_layer(features, {'color': 'black'}, 'Places from Overture Maps Dataset')\ndisplay(m)\n\n# Create a histogram of the place categories.\nproperty_of_interest = 'category'\nhistogram = (\n features.filter(\n ee.Filter.notNull([property_of_interest])\n ).aggregate_histogram(property_of_interest)\n).getInfo()\n\n# Display the histogram as a pandas DataFrame.\ndf = pd.DataFrame(list(histogram.items()), columns=['category', 'frequency'])\ndf = df.sort_values(by=['frequency'], ascending=False, ignore_index=True)\ndisplay(df)\n```"]]