Announcement: All noncommercial projects registered to use Earth Engine before
April 15, 2025 must
verify noncommercial eligibility to maintain Earth Engine access.
ee.FeatureCollection.aggregate_mean
Stay organized with collections
Save and categorize content based on your preferences.
Aggregates over a given property of the objects in a collection, calculating the mean of the selected property.
Usage | Returns | FeatureCollection.aggregate_mean(property) | Number |
Argument | Type | Details | this: collection | FeatureCollection | The collection to aggregate over. |
property | String | The property to use from each element of the collection. |
Examples
Code Editor (JavaScript)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
print('Mean of power plant capacities (MW)',
fc.aggregate_mean('capacitymw')); // 201.342424242
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"')
print('Mean of power plant capacities (MW):',
fc.aggregate_mean('capacitymw').getInfo()) # 201.342424242
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[[["\u003cp\u003eCalculates the mean (average) value of a specified property across all features within a FeatureCollection.\u003c/p\u003e\n"],["\u003cp\u003eAccepts a FeatureCollection and the name of the property to analyze as input.\u003c/p\u003e\n"],["\u003cp\u003eReturns a single numerical value representing the calculated mean.\u003c/p\u003e\n"],["\u003cp\u003eUseful for understanding the central tendency of a property within a dataset, such as average power plant capacity in a region.\u003c/p\u003e\n"]]],["The `aggregate_mean` function calculates the mean of a specified property across a FeatureCollection. It takes the `FeatureCollection` and the `property` name as inputs. The function returns a Number representing the mean value. For example, using a FeatureCollection of power plants, `aggregate_mean('capacitymw')` computes the mean power plant capacity in megawatts. The provided examples showcase how to implement it in both JavaScript and Python environments.\n"],null,["# ee.FeatureCollection.aggregate_mean\n\nAggregates over a given property of the objects in a collection, calculating the mean of the selected property.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|----------------------------------------------|---------|\n| FeatureCollection.aggregate_mean`(property)` | Number |\n\n| Argument | Type | Details |\n|--------------------|-------------------|----------------------------------------------------------|\n| this: `collection` | FeatureCollection | The collection to aggregate over. |\n| `property` | String | The property to use from each element of the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// FeatureCollection of power plants in Belgium.\nvar fc = ee.FeatureCollection('WRI/GPPD/power_plants')\n .filter('country_lg == \"Belgium\"');\n\nprint('Mean of power plant capacities (MW)',\n fc.aggregate_mean('capacitymw')); // 201.342424242\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# FeatureCollection of power plants in Belgium.\nfc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(\n 'country_lg == \"Belgium\"')\n\nprint('Mean of power plant capacities (MW):',\n fc.aggregate_mean('capacitymw').getInfo()) # 201.342424242\n```"]]