Announcement: All noncommercial projects registered to use Earth Engine before
April 15, 2025 must
verify noncommercial eligibility to maintain Earth Engine access.
ee.Geometry.LinearRing.centroid
Stay organized with collections
Save and categorize content based on your preferences.
Returns a point at the center of the highest-dimension components of the geometry. Lower-dimensional components are ignored, so the centroid of a geometry containing two polygons, three lines and a point is equivalent to the centroid of a geometry containing just the two polygons.
Usage | Returns | LinearRing.centroid(maxError, proj) | Geometry |
Argument | Type | Details | this: geometry | Geometry | Calculates the centroid of this geometry. |
maxError | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |
proj | Projection, default: null | If specified, the result will be in this projection. Otherwise it will be in EPSG:4326. |
Examples
Code Editor (JavaScript)
// Define a LinearRing object.
var linearRing = ee.Geometry.LinearRing(
[[-122.091, 37.420],
[-122.085, 37.422],
[-122.080, 37.430]]);
// Apply the centroid method to the LinearRing object.
var linearRingCentroid = linearRing.centroid({'maxError': 1});
// Print the result to the console.
print('linearRing.centroid(...) =', linearRingCentroid);
// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(linearRing,
{'color': 'black'},
'Geometry [black]: linearRing');
Map.addLayer(linearRingCentroid,
{'color': 'red'},
'Result [red]: linearRing.centroid');
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# Define a LinearRing object.
linearring = ee.Geometry.LinearRing(
[[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]
)
# Apply the centroid method to the LinearRing object.
linearring_centroid = linearring.centroid(maxError=1)
# Print the result.
display('linearring.centroid(...) =', linearring_centroid)
# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')
m.add_layer(
linearring_centroid, {'color': 'red'}, 'Result [red]: linearring.centroid'
)
m
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-05 UTC.
[null,null,["Last updated 2024-06-05 UTC."],[[["\u003cp\u003e\u003ccode\u003ecentroid()\u003c/code\u003e returns a point at the center of the highest-dimension components of a geometry, ignoring lower dimensions.\u003c/p\u003e\n"],["\u003cp\u003eIt is applicable to \u003ccode\u003eLinearRing\u003c/code\u003e geometries and accepts optional \u003ccode\u003emaxError\u003c/code\u003e and \u003ccode\u003eproj\u003c/code\u003e parameters.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003emaxError\u003c/code\u003e controls the reprojection error tolerance, while \u003ccode\u003eproj\u003c/code\u003e specifies the output projection (defaults to EPSG:4326).\u003c/p\u003e\n"],["\u003cp\u003eThe function effectively calculates the geometric center of the input geometry.\u003c/p\u003e\n"]]],["The `centroid()` method calculates the center point of a geometry's highest-dimension components, disregarding lower-dimensional parts. It accepts `maxError` to control reprojection tolerance and `proj` to specify the output projection, defaulting to EPSG:4326. It applies to geometry such as a `LinearRing` and outputs the center point as a `Geometry` object. Examples show its use in Javascript and Python, creating a centroid and visually displaying it with its source geometry.\n"],null,["# ee.Geometry.LinearRing.centroid\n\nReturns a point at the center of the highest-dimension components of the geometry. Lower-dimensional components are ignored, so the centroid of a geometry containing two polygons, three lines and a point is equivalent to the centroid of a geometry containing just the two polygons.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|------------------------------------------------|----------|\n| LinearRing.centroid`(`*maxError* `, `*proj*`)` | Geometry |\n\n| Argument | Type | Details |\n|------------------|----------------------------|-----------------------------------------------------------------------------------------|\n| this: `geometry` | Geometry | Calculates the centroid of this geometry. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |\n| `proj` | Projection, default: null | If specified, the result will be in this projection. Otherwise it will be in EPSG:4326. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a LinearRing object.\nvar linearRing = ee.Geometry.LinearRing(\n [[-122.091, 37.420],\n [-122.085, 37.422],\n [-122.080, 37.430]]);\n\n// Apply the centroid method to the LinearRing object.\nvar linearRingCentroid = linearRing.centroid({'maxError': 1});\n\n// Print the result to the console.\nprint('linearRing.centroid(...) =', linearRingCentroid);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(linearRing,\n {'color': 'black'},\n 'Geometry [black]: linearRing');\nMap.addLayer(linearRingCentroid,\n {'color': 'red'},\n 'Result [red]: linearRing.centroid');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a LinearRing object.\nlinearring = ee.Geometry.LinearRing(\n [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]\n)\n\n# Apply the centroid method to the LinearRing object.\nlinearring_centroid = linearring.centroid(maxError=1)\n\n# Print the result.\ndisplay('linearring.centroid(...) =', linearring_centroid)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')\nm.add_layer(\n linearring_centroid, {'color': 'red'}, 'Result [red]: linearring.centroid'\n)\nm\n```"]]