Announcement: All noncommercial projects registered to use Earth Engine before
April 15, 2025 must
verify noncommercial eligibility to maintain Earth Engine access.
ee.Geometry.LinearRing.intersection
Stay organized with collections
Save and categorize content based on your preferences.
Returns the intersection of the two geometries.
Usage | Returns | LinearRing.intersection(right, maxError, proj) | Geometry |
Argument | Type | Details | this: left | Geometry | The geometry used as the left operand of the operation. |
right | Geometry | The geometry used as the right operand of the operation. |
maxError | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |
proj | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |
Examples
Code Editor (JavaScript)
// Define a LinearRing object.
var linearRing = ee.Geometry.LinearRing(
[[-122.091, 37.420],
[-122.085, 37.422],
[-122.080, 37.430]]);
// Define other inputs.
var inputGeom = ee.Geometry.BBox(-122.085, 37.415, -122.075, 37.425);
// Apply the intersection method to the LinearRing object.
var linearRingIntersection = linearRing.intersection({'right': inputGeom, 'maxError': 1});
// Print the result to the console.
print('linearRing.intersection(...) =', linearRingIntersection);
// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(linearRing,
{'color': 'black'},
'Geometry [black]: linearRing');
Map.addLayer(inputGeom,
{'color': 'blue'},
'Parameter [blue]: inputGeom');
Map.addLayer(linearRingIntersection,
{'color': 'red'},
'Result [red]: linearRing.intersection');
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# Define a LinearRing object.
linearring = ee.Geometry.LinearRing(
[[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]
)
# Define other inputs.
input_geom = ee.Geometry.BBox(-122.085, 37.415, -122.075, 37.425)
# Apply the intersection method to the LinearRing object.
linearring_intersection = linearring.intersection(right=input_geom, maxError=1)
# Print the result.
display('linearring.intersection(...) =', linearring_intersection)
# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')
m.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')
m.add_layer(
linearring_intersection,
{'color': 'red'},
'Result [red]: linearring.intersection',
)
m
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[[["\u003cp\u003eReturns a Geometry representing the shared area between two geometries.\u003c/p\u003e\n"],["\u003cp\u003eAccepts a right-hand Geometry operand, optional error margin, and projection for the operation.\u003c/p\u003e\n"],["\u003cp\u003eCan be applied to LinearRing geometries to find the intersecting portion with another geometry.\u003c/p\u003e\n"],["\u003cp\u003eIf projection is unspecified, calculations occur in a spherical coordinate system with distances in meters.\u003c/p\u003e\n"]]],["The `intersection` method computes the overlapping area between two geometries. It takes a `right` geometry as input, and optionally `maxError` for reprojection tolerance, and `proj` for a specific projection. The method is used by calling it on a `LinearRing` geometry with the other geometry provided as an argument. The output, which represents the intersection, is also a geometry, the result of which is returned.\n"],null,["# ee.Geometry.LinearRing.intersection\n\nReturns the intersection of the two geometries.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-----------------------------------------------------------|----------|\n| LinearRing.intersection`(right, `*maxError* `, `*proj*`)` | Geometry |\n\n| Argument | Type | Details |\n|--------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `left` | Geometry | The geometry used as the left operand of the operation. |\n| `right` | Geometry | The geometry used as the right operand of the operation. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |\n| `proj` | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a LinearRing object.\nvar linearRing = ee.Geometry.LinearRing(\n [[-122.091, 37.420],\n [-122.085, 37.422],\n [-122.080, 37.430]]);\n\n// Define other inputs.\nvar inputGeom = ee.Geometry.BBox(-122.085, 37.415, -122.075, 37.425);\n\n// Apply the intersection method to the LinearRing object.\nvar linearRingIntersection = linearRing.intersection({'right': inputGeom, 'maxError': 1});\n\n// Print the result to the console.\nprint('linearRing.intersection(...) =', linearRingIntersection);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(linearRing,\n {'color': 'black'},\n 'Geometry [black]: linearRing');\nMap.addLayer(inputGeom,\n {'color': 'blue'},\n 'Parameter [blue]: inputGeom');\nMap.addLayer(linearRingIntersection,\n {'color': 'red'},\n 'Result [red]: linearRing.intersection');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a LinearRing object.\nlinearring = ee.Geometry.LinearRing(\n [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]\n)\n\n# Define other inputs.\ninput_geom = ee.Geometry.BBox(-122.085, 37.415, -122.075, 37.425)\n\n# Apply the intersection method to the LinearRing object.\nlinearring_intersection = linearring.intersection(right=input_geom, maxError=1)\n\n# Print the result.\ndisplay('linearring.intersection(...) =', linearring_intersection)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')\nm.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')\nm.add_layer(\n linearring_intersection,\n {'color': 'red'},\n 'Result [red]: linearring.intersection',\n)\nm\n```"]]