AI-generated Key Takeaways
-
The
length()method returns the length of the linear parts of a geometry, ignoring polygonal parts. -
For multi geometries, the length is the sum of the lengths of their components.
-
Optional arguments include
maxErrorfor error tolerance during reprojection andprojto specify the output coordinate system units. -
The method can be applied to a
LinearRingobject, as demonstrated in the provided JavaScript and Python examples.
| Usage | Returns |
|---|---|
LinearRing.length(maxError, proj) | Float |
| Argument | Type | Details |
|---|---|---|
this: geometry | Geometry | The input geometry. |
maxError | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |
proj | Projection, default: null | If specified, the result will be in the units of the coordinate system of this projection. Otherwise it will be in meters. |
Examples
Code Editor (JavaScript)
// Define a LinearRing object. var linearRing = ee.Geometry.LinearRing( [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]); // Apply the length method to the LinearRing object. var linearRingLength = linearRing.length(); // Print the result to the console. print('linearRing.length(...) =', linearRingLength); // Display relevant geometries on the map. Map.setCenter(-122.085, 37.422, 15); Map.addLayer(linearRing, {'color': 'black'}, 'Geometry [black]: linearRing');
import ee import geemap.core as geemap
Colab (Python)
# Define a LinearRing object. linearring = ee.Geometry.LinearRing( [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]] ) # Apply the length method to the LinearRing object. linearring_length = linearring.length() # Print the result. display('linearring.length(...) =', linearring_length) # Display relevant geometries on the map. m = geemap.Map() m.set_center(-122.085, 37.422, 15) m.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring') m