Announcement: All noncommercial projects registered to use Earth Engine before
April 15, 2025 must
verify noncommercial eligibility to maintain Earth Engine access.
ee.Geometry.MultiPolygon.centroid
Stay organized with collections
Save and categorize content based on your preferences.
Returns a point at the center of the highest-dimension components of the geometry. Lower-dimensional components are ignored, so the centroid of a geometry containing two polygons, three lines and a point is equivalent to the centroid of a geometry containing just the two polygons.
Usage | Returns | MultiPolygon.centroid(maxError, proj) | Geometry |
Argument | Type | Details | this: geometry | Geometry | Calculates the centroid of this geometry. |
maxError | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |
proj | Projection, default: null | If specified, the result will be in this projection. Otherwise it will be in EPSG:4326. |
Examples
Code Editor (JavaScript)
// Define a MultiPolygon object.
var multiPolygon = ee.Geometry.MultiPolygon(
[[[[-122.092, 37.424],
[-122.086, 37.418],
[-122.079, 37.425],
[-122.085, 37.423]]],
[[[-122.081, 37.417],
[-122.086, 37.421],
[-122.089, 37.416]]]]);
// Apply the centroid method to the MultiPolygon object.
var multiPolygonCentroid = multiPolygon.centroid({'maxError': 1});
// Print the result to the console.
print('multiPolygon.centroid(...) =', multiPolygonCentroid);
// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(multiPolygon,
{'color': 'black'},
'Geometry [black]: multiPolygon');
Map.addLayer(multiPolygonCentroid,
{'color': 'red'},
'Result [red]: multiPolygon.centroid');
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# Define a MultiPolygon object.
multipolygon = ee.Geometry.MultiPolygon([
[[
[-122.092, 37.424],
[-122.086, 37.418],
[-122.079, 37.425],
[-122.085, 37.423],
]],
[[[-122.081, 37.417], [-122.086, 37.421], [-122.089, 37.416]]],
])
# Apply the centroid method to the MultiPolygon object.
multipolygon_centroid = multipolygon.centroid(maxError=1)
# Print the result.
display('multipolygon.centroid(...) =', multipolygon_centroid)
# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(
multipolygon, {'color': 'black'}, 'Geometry [black]: multipolygon'
)
m.add_layer(
multipolygon_centroid,
{'color': 'red'},
'Result [red]: multipolygon.centroid',
)
m
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-05 UTC.
[null,null,["Last updated 2024-06-05 UTC."],[[["\u003cp\u003eReturns a point representing the center of the highest-dimension components within a geometry, ignoring lower dimensions.\u003c/p\u003e\n"],["\u003cp\u003eAccepts optional \u003ccode\u003emaxError\u003c/code\u003e and \u003ccode\u003eproj\u003c/code\u003e arguments for error tolerance during reprojection and specifying the output projection, respectively.\u003c/p\u003e\n"],["\u003cp\u003eThe default projection for the returned centroid is EPSG:4326 if \u003ccode\u003eproj\u003c/code\u003e is not specified.\u003c/p\u003e\n"],["\u003cp\u003eCan be applied to MultiPolygon objects to calculate their center point.\u003c/p\u003e\n"]]],["The `centroid()` method calculates the center point of a geometry's highest-dimensional components, ignoring lower-dimensional ones. It accepts `maxError` for reprojection tolerance and `proj` for specifying the output projection. By default it returns a Geometry in EPSG:4326. Example provided how to generate the centroid of a `MultiPolygon` using both JavaScript and Python code. The example code displays the input polygon and the resulting centroid on a map.\n"],null,["# ee.Geometry.MultiPolygon.centroid\n\nReturns a point at the center of the highest-dimension components of the geometry. Lower-dimensional components are ignored, so the centroid of a geometry containing two polygons, three lines and a point is equivalent to the centroid of a geometry containing just the two polygons.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------|----------|\n| MultiPolygon.centroid`(`*maxError* `, `*proj*`)` | Geometry |\n\n| Argument | Type | Details |\n|------------------|----------------------------|-----------------------------------------------------------------------------------------|\n| this: `geometry` | Geometry | Calculates the centroid of this geometry. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |\n| `proj` | Projection, default: null | If specified, the result will be in this projection. Otherwise it will be in EPSG:4326. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a MultiPolygon object.\nvar multiPolygon = ee.Geometry.MultiPolygon(\n [[[[-122.092, 37.424],\n [-122.086, 37.418],\n [-122.079, 37.425],\n [-122.085, 37.423]]],\n [[[-122.081, 37.417],\n [-122.086, 37.421],\n [-122.089, 37.416]]]]);\n\n// Apply the centroid method to the MultiPolygon object.\nvar multiPolygonCentroid = multiPolygon.centroid({'maxError': 1});\n\n// Print the result to the console.\nprint('multiPolygon.centroid(...) =', multiPolygonCentroid);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(multiPolygon,\n {'color': 'black'},\n 'Geometry [black]: multiPolygon');\nMap.addLayer(multiPolygonCentroid,\n {'color': 'red'},\n 'Result [red]: multiPolygon.centroid');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a MultiPolygon object.\nmultipolygon = ee.Geometry.MultiPolygon([\n [[\n [-122.092, 37.424],\n [-122.086, 37.418],\n [-122.079, 37.425],\n [-122.085, 37.423],\n ]],\n [[[-122.081, 37.417], [-122.086, 37.421], [-122.089, 37.416]]],\n])\n\n# Apply the centroid method to the MultiPolygon object.\nmultipolygon_centroid = multipolygon.centroid(maxError=1)\n\n# Print the result.\ndisplay('multipolygon.centroid(...) =', multipolygon_centroid)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(\n multipolygon, {'color': 'black'}, 'Geometry [black]: multipolygon'\n)\nm.add_layer(\n multipolygon_centroid,\n {'color': 'red'},\n 'Result [red]: multipolygon.centroid',\n)\nm\n```"]]