Announcement: All noncommercial projects registered to use Earth Engine before
April 15, 2025 must
verify noncommercial eligibility to maintain Earth Engine access.
ee.Geometry.MultiPolygon.distance
Stay organized with collections
Save and categorize content based on your preferences.
Returns the minimum distance between two geometries.
Usage | Returns | MultiPolygon.distance(right, maxError, proj, spherical) | Float |
Argument | Type | Details | this: left | Geometry | The geometry used as the left operand of the operation. |
right | Geometry | The geometry used as the right operand of the operation. |
maxError | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |
proj | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |
spherical | Boolean, default: false | If true, the calculation will be done on the unit sphere. If false, the calculation will be elliptical, taking earth flattening into account. Ignored if proj is specified. Default is false. |
Examples
Code Editor (JavaScript)
// Define a MultiPolygon object.
var multiPolygon = ee.Geometry.MultiPolygon(
[[[[-122.092, 37.424],
[-122.086, 37.418],
[-122.079, 37.425],
[-122.085, 37.423]]],
[[[-122.081, 37.417],
[-122.086, 37.421],
[-122.089, 37.416]]]]);
// Define other inputs.
var inputGeom = ee.Geometry.Point(-122.090, 37.423);
// Apply the distance method to the MultiPolygon object.
var multiPolygonDistance = multiPolygon.distance({'right': inputGeom, 'maxError': 1});
// Print the result to the console.
print('multiPolygon.distance(...) =', multiPolygonDistance);
// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(multiPolygon,
{'color': 'black'},
'Geometry [black]: multiPolygon');
Map.addLayer(inputGeom,
{'color': 'blue'},
'Parameter [blue]: inputGeom');
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# Define a MultiPolygon object.
multipolygon = ee.Geometry.MultiPolygon([
[[
[-122.092, 37.424],
[-122.086, 37.418],
[-122.079, 37.425],
[-122.085, 37.423],
]],
[[[-122.081, 37.417], [-122.086, 37.421], [-122.089, 37.416]]],
])
# Define other inputs.
input_geom = ee.Geometry.Point(-122.090, 37.423)
# Apply the distance method to the MultiPolygon object.
multipolygon_distance = multipolygon.distance(right=input_geom, maxError=1)
# Print the result.
display('multipolygon.distance(...) =', multipolygon_distance)
# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(
multipolygon, {'color': 'black'}, 'Geometry [black]: multipolygon'
)
m.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')
m
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-06-23 UTC.
[null,null,["Last updated 2025-06-23 UTC."],[[["\u003cp\u003e\u003ccode\u003edistance()\u003c/code\u003e calculates the minimum distance between a MultiPolygon and another geometry.\u003c/p\u003e\n"],["\u003cp\u003eThe function returns the distance as a float, potentially in meters on the sphere depending on the projection used.\u003c/p\u003e\n"],["\u003cp\u003eOptional parameters include \u003ccode\u003emaxError\u003c/code\u003e for reprojection tolerance and \u003ccode\u003eproj\u003c/code\u003e to specify the projection for the calculation.\u003c/p\u003e\n"],["\u003cp\u003eThe distance is computed from the boundary of the MultiPolygon to the nearest point on the other geometry.\u003c/p\u003e\n"]]],["The `distance` method calculates the minimum distance between two geometries (`left` and `right`). It accepts optional arguments: `maxError` (tolerated error during reprojection), `proj` (projection for the operation), and `spherical` (whether to use a spherical or elliptical model). The method returns a float representing the distance. Examples in JavaScript and Python demonstrate calculating the distance between a MultiPolygon and a Point, and how to display the result in a map.\n"],null,["# ee.Geometry.MultiPolygon.distance\n\nReturns the minimum distance between two geometries.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-------------------------------------------------------------------------|---------|\n| MultiPolygon.distance`(right, `*maxError* `, `*proj* `, `*spherical*`)` | Float |\n\n| Argument | Type | Details |\n|--------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `left` | Geometry | The geometry used as the left operand of the operation. |\n| `right` | Geometry | The geometry used as the right operand of the operation. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |\n| `proj` | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |\n| `spherical` | Boolean, default: false | If true, the calculation will be done on the unit sphere. If false, the calculation will be elliptical, taking earth flattening into account. Ignored if proj is specified. Default is false. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a MultiPolygon object.\nvar multiPolygon = ee.Geometry.MultiPolygon(\n [[[[-122.092, 37.424],\n [-122.086, 37.418],\n [-122.079, 37.425],\n [-122.085, 37.423]]],\n [[[-122.081, 37.417],\n [-122.086, 37.421],\n [-122.089, 37.416]]]]);\n\n// Define other inputs.\nvar inputGeom = ee.Geometry.Point(-122.090, 37.423);\n\n// Apply the distance method to the MultiPolygon object.\nvar multiPolygonDistance = multiPolygon.distance({'right': inputGeom, 'maxError': 1});\n\n// Print the result to the console.\nprint('multiPolygon.distance(...) =', multiPolygonDistance);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(multiPolygon,\n {'color': 'black'},\n 'Geometry [black]: multiPolygon');\nMap.addLayer(inputGeom,\n {'color': 'blue'},\n 'Parameter [blue]: inputGeom');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a MultiPolygon object.\nmultipolygon = ee.Geometry.MultiPolygon([\n [[\n [-122.092, 37.424],\n [-122.086, 37.418],\n [-122.079, 37.425],\n [-122.085, 37.423],\n ]],\n [[[-122.081, 37.417], [-122.086, 37.421], [-122.089, 37.416]]],\n])\n\n# Define other inputs.\ninput_geom = ee.Geometry.Point(-122.090, 37.423)\n\n# Apply the distance method to the MultiPolygon object.\nmultipolygon_distance = multipolygon.distance(right=input_geom, maxError=1)\n\n# Print the result.\ndisplay('multipolygon.distance(...) =', multipolygon_distance)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(\n multipolygon, {'color': 'black'}, 'Geometry [black]: multipolygon'\n)\nm.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')\nm\n```"]]