Announcement: All noncommercial projects registered to use Earth Engine before
April 15, 2025 must
verify noncommercial eligibility to maintain Earth Engine access.
ee.Geometry.MultiPolygon.intersection
Stay organized with collections
Save and categorize content based on your preferences.
Returns the intersection of the two geometries.
Usage | Returns | MultiPolygon.intersection(right, maxError, proj) | Geometry |
Argument | Type | Details | this: left | Geometry | The geometry used as the left operand of the operation. |
right | Geometry | The geometry used as the right operand of the operation. |
maxError | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |
proj | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |
Examples
Code Editor (JavaScript)
// Define a MultiPolygon object.
var multiPolygon = ee.Geometry.MultiPolygon(
[[[[-122.092, 37.424],
[-122.086, 37.418],
[-122.079, 37.425],
[-122.085, 37.423]]],
[[[-122.081, 37.417],
[-122.086, 37.421],
[-122.089, 37.416]]]]);
// Define other inputs.
var inputGeom = ee.Geometry.BBox(-122.085, 37.415, -122.075, 37.425);
// Apply the intersection method to the MultiPolygon object.
var multiPolygonIntersection = multiPolygon.intersection({'right': inputGeom, 'maxError': 1});
// Print the result to the console.
print('multiPolygon.intersection(...) =', multiPolygonIntersection);
// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(multiPolygon,
{'color': 'black'},
'Geometry [black]: multiPolygon');
Map.addLayer(inputGeom,
{'color': 'blue'},
'Parameter [blue]: inputGeom');
Map.addLayer(multiPolygonIntersection,
{'color': 'red'},
'Result [red]: multiPolygon.intersection');
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# Define a MultiPolygon object.
multipolygon = ee.Geometry.MultiPolygon([
[[
[-122.092, 37.424],
[-122.086, 37.418],
[-122.079, 37.425],
[-122.085, 37.423],
]],
[[[-122.081, 37.417], [-122.086, 37.421], [-122.089, 37.416]]],
])
# Define other inputs.
input_geom = ee.Geometry.BBox(-122.085, 37.415, -122.075, 37.425)
# Apply the intersection method to the MultiPolygon object.
multipolygon_intersection = multipolygon.intersection(
right=input_geom, maxError=1
)
# Print the result.
display('multipolygon.intersection(...) =', multipolygon_intersection)
# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(
multipolygon, {'color': 'black'}, 'Geometry [black]: multipolygon'
)
m.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')
m.add_layer(
multipolygon_intersection,
{'color': 'red'},
'Result [red]: multipolygon.intersection',
)
m
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[[["\u003cp\u003e\u003ccode\u003eintersection\u003c/code\u003e returns a Geometry representing the shared area between a MultiPolygon and another Geometry.\u003c/p\u003e\n"],["\u003cp\u003eIt takes the \u003ccode\u003eright\u003c/code\u003e Geometry, optional \u003ccode\u003emaxError\u003c/code\u003e, and optional \u003ccode\u003eproj\u003c/code\u003e as arguments.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003emaxError\u003c/code\u003e parameter controls the tolerance for reprojection errors.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eproj\u003c/code\u003e parameter specifies the projection for the operation, defaulting to spherical coordinates if unspecified.\u003c/p\u003e\n"]]],["The `intersection` method computes the overlapping area between two geometries, returning a new geometry representing their intersection. It takes a `right` geometry as the second operand, and optionally `maxError` and `proj` parameters for error tolerance and projection. The operation can be performed in a spherical coordinate system or using a specified projection. Examples in Javascript and python are provided showing how to define geometries, call the `intersection` method, and display the results.\n"],null,["# ee.Geometry.MultiPolygon.intersection\n\nReturns the intersection of the two geometries.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-------------------------------------------------------------|----------|\n| MultiPolygon.intersection`(right, `*maxError* `, `*proj*`)` | Geometry |\n\n| Argument | Type | Details |\n|--------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `left` | Geometry | The geometry used as the left operand of the operation. |\n| `right` | Geometry | The geometry used as the right operand of the operation. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |\n| `proj` | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a MultiPolygon object.\nvar multiPolygon = ee.Geometry.MultiPolygon(\n [[[[-122.092, 37.424],\n [-122.086, 37.418],\n [-122.079, 37.425],\n [-122.085, 37.423]]],\n [[[-122.081, 37.417],\n [-122.086, 37.421],\n [-122.089, 37.416]]]]);\n\n// Define other inputs.\nvar inputGeom = ee.Geometry.BBox(-122.085, 37.415, -122.075, 37.425);\n\n// Apply the intersection method to the MultiPolygon object.\nvar multiPolygonIntersection = multiPolygon.intersection({'right': inputGeom, 'maxError': 1});\n\n// Print the result to the console.\nprint('multiPolygon.intersection(...) =', multiPolygonIntersection);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(multiPolygon,\n {'color': 'black'},\n 'Geometry [black]: multiPolygon');\nMap.addLayer(inputGeom,\n {'color': 'blue'},\n 'Parameter [blue]: inputGeom');\nMap.addLayer(multiPolygonIntersection,\n {'color': 'red'},\n 'Result [red]: multiPolygon.intersection');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a MultiPolygon object.\nmultipolygon = ee.Geometry.MultiPolygon([\n [[\n [-122.092, 37.424],\n [-122.086, 37.418],\n [-122.079, 37.425],\n [-122.085, 37.423],\n ]],\n [[[-122.081, 37.417], [-122.086, 37.421], [-122.089, 37.416]]],\n])\n\n# Define other inputs.\ninput_geom = ee.Geometry.BBox(-122.085, 37.415, -122.075, 37.425)\n\n# Apply the intersection method to the MultiPolygon object.\nmultipolygon_intersection = multipolygon.intersection(\n right=input_geom, maxError=1\n)\n\n# Print the result.\ndisplay('multipolygon.intersection(...) =', multipolygon_intersection)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(\n multipolygon, {'color': 'black'}, 'Geometry [black]: multipolygon'\n)\nm.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')\nm.add_layer(\n multipolygon_intersection,\n {'color': 'red'},\n 'Result [red]: multipolygon.intersection',\n)\nm\n```"]]