ee.Image.reduceRegion
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Appliquez un réducteur à tous les pixels d'une région spécifique.
Soit le réducteur doit avoir le même nombre d'entrées que le nombre de bandes de l'image d'entrée, soit il doit avoir une seule entrée et sera répété pour chaque bande.
Renvoie un dictionnaire des sorties du réducteur.
Utilisation | Renvoie |
---|
Image.reduceRegion(reducer, geometry, scale, crs, crsTransform, bestEffort, maxPixels, tileScale) | Dictionnaire |
Argument | Type | Détails |
---|
ceci : image | Image | Image à réduire. |
reducer | Réducteur | Réducteur à appliquer. |
geometry | Géométrie, valeur par défaut : null | Région pour laquelle réduire les données. La valeur par défaut correspond à l'empreinte de la première bande de l'image. |
scale | Float, valeur par défaut : null | Échelle nominale en mètres de la projection dans laquelle travailler. |
crs | Projection, valeur par défaut : null | Projection à utiliser. Si aucune projection n'est spécifiée, celle de la première bande de l'image est utilisée. Si elle est spécifiée en plus de la mise à l'échelle, elle est remise à l'échelle spécifiée. |
crsTransform | Liste, valeur par défaut : null | Liste des valeurs de transformation du CRS. Il s'agit d'un ordre de ligne principale de la matrice de transformation 3x2. Cette option est incompatible avec "scale" et remplace toute transformation déjà définie sur la projection. |
bestEffort | Booléen, valeur par défaut : false | Si le polygone contient trop de pixels à l'échelle donnée, calculez et utilisez une échelle plus grande pour que l'opération réussisse. |
maxPixels | Long, valeur par défaut : 10000000 | Nombre maximal de pixels à réduire. |
tileScale | Float, valeur par défaut : 1 | Facteur de scaling compris entre 0,1 et 16 utilisé pour ajuster la taille des tuiles d'agrégation. Si vous définissez une valeur tileScale plus élevée (par exemple, 2 ou 4) utilise des tuiles plus petites et peut permettre d'effectuer des calculs qui manquent de mémoire avec la valeur par défaut. |
Exemples
Éditeur de code (JavaScript)
// A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.
var img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')
.select(['SR_B6', 'SR_B5', 'SR_B3']);
// Santa Cruz Mountains ecoregion geometry.
var geom = ee.FeatureCollection('EPA/Ecoregions/2013/L4')
.filter('us_l4name == "Santa Cruz Mountains"').geometry();
// Display layers on the map.
Map.setCenter(-122.08, 37.22, 9);
Map.addLayer(img, {min: 10000, max: 20000}, 'Landsat image');
Map.addLayer(geom, {color: 'white'}, 'Santa Cruz Mountains ecoregion');
// Calculate median band values within Santa Cruz Mountains ecoregion. It is
// good practice to explicitly define "scale" (or "crsTransform") and "crs"
// parameters of the analysis to avoid unexpected results from undesired
// defaults when e.g. reducing a composite image.
var stats = img.reduceRegion({
reducer: ee.Reducer.median(),
geometry: geom,
scale: 30, // meters
crs: 'EPSG:3310', // California Albers projection
});
// A dictionary is returned; keys are band names, values are the statistic.
print('Median band values, Santa Cruz Mountains ecoregion', stats);
// You can combine reducers to calculate e.g. mean and standard deviation
// simultaneously. The output dictionary keys are the concatenation of the band
// names and statistic names, separated by an underscore.
var reducer = ee.Reducer.mean().combine({
reducer2: ee.Reducer.stdDev(),
sharedInputs: true
});
var multiStats = img.reduceRegion({
reducer: reducer,
geometry: geom,
scale: 30,
crs: 'EPSG:3310',
});
print('Mean & SD band values, Santa Cruz Mountains ecoregion', multiStats);
Configuration de Python
Consultez la page
Environnement Python pour en savoir plus sur l'API Python et sur l'utilisation de geemap
pour le développement interactif.
import ee
import geemap.core as geemap
Colab (Python)
# A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.
img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508').select(
['SR_B6', 'SR_B5', 'SR_B3']
)
# Santa Cruz Mountains ecoregion geometry.
geom = (
ee.FeatureCollection('EPA/Ecoregions/2013/L4')
.filter('us_l4name == "Santa Cruz Mountains"')
.geometry()
)
# Display layers on the map.
m = geemap.Map()
m.set_center(-122.08, 37.22, 9)
m.add_layer(img, {'min': 10000, 'max': 20000}, 'Landsat image')
m.add_layer(geom, {'color': 'white'}, 'Santa Cruz Mountains ecoregion')
display(m)
# Calculate median band values within Santa Cruz Mountains ecoregion. It is
# good practice to explicitly define "scale" (or "crsTransform") and "crs"
# parameters of the analysis to avoid unexpected results from undesired
# defaults when e.g. reducing a composite image.
stats = img.reduceRegion(
reducer=ee.Reducer.median(),
geometry=geom,
scale=30, # meters
crs='EPSG:3310', # California Albers projection
)
# A dictionary is returned keys are band names, values are the statistic.
display('Median band values, Santa Cruz Mountains ecoregion', stats)
# You can combine reducers to calculate e.g. mean and standard deviation
# simultaneously. The output dictionary keys are the concatenation of the band
# names and statistic names, separated by an underscore.
reducer = ee.Reducer.mean().combine(
reducer2=ee.Reducer.stdDev(), sharedInputs=True
)
multi_stats = img.reduceRegion(
reducer=reducer,
geometry=geom,
scale=30,
crs='EPSG:3310',
)
display('Mean & SD band values, Santa Cruz Mountains ecoregion', multi_stats)
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[[["\u003cp\u003e\u003ccode\u003eImage.reduceRegion()\u003c/code\u003e applies a reducer function to all pixels within a specified region of an image.\u003c/p\u003e\n"],["\u003cp\u003eThe reducer can either accept the same number of inputs as the image bands or a single input to be applied to each band.\u003c/p\u003e\n"],["\u003cp\u003eIt returns a dictionary containing the reducer's output, with keys representing band names and values corresponding to the calculated statistic.\u003c/p\u003e\n"],["\u003cp\u003eUsers can define parameters like scale, projection, and geometry to control the region and resolution of the reduction operation.\u003c/p\u003e\n"],["\u003cp\u003eMultiple reducers can be combined to calculate multiple statistics simultaneously, with output dictionary keys reflecting both band and statistic names.\u003c/p\u003e\n"]]],[],null,["# ee.Image.reduceRegion\n\nApply a reducer to all the pixels in a specific region.\n\n\u003cbr /\u003e\n\nEither the reducer must have the same number of inputs as the input image has bands, or it must have a single input and will be repeated for each band.\n\nReturns a dictionary of the reducer's outputs.\n\n| Usage | Returns |\n|---------------------------------------------------------------------------------------------------------------------------------------|------------|\n| Image.reduceRegion`(reducer, `*geometry* `, `*scale* `, `*crs* `, `*crsTransform* `, `*bestEffort* `, `*maxPixels* `, `*tileScale*`)` | Dictionary |\n\n| Argument | Type | Details |\n|----------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `image` | Image | The image to reduce. |\n| `reducer` | Reducer | The reducer to apply. |\n| `geometry` | Geometry, default: null | The region over which to reduce data. Defaults to the footprint of the image's first band. |\n| `scale` | Float, default: null | A nominal scale in meters of the projection to work in. |\n| `crs` | Projection, default: null | The projection to work in. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. |\n| `crsTransform` | List, default: null | The list of CRS transform values. This is a row-major ordering of the 3x2 transform matrix. This option is mutually exclusive with 'scale', and replaces any transform already set on the projection. |\n| `bestEffort` | Boolean, default: false | If the polygon would contain too many pixels at the given scale, compute and use a larger scale which would allow the operation to succeed. |\n| `maxPixels` | Long, default: 10000000 | The maximum number of pixels to reduce. |\n| `tileScale` | Float, default: 1 | A scaling factor between 0.1 and 16 used to adjust aggregation tile size; setting a larger tileScale (e.g., 2 or 4) uses smaller tiles and may enable computations that run out of memory with the default. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.\nvar img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')\n .select(['SR_B6', 'SR_B5', 'SR_B3']);\n\n// Santa Cruz Mountains ecoregion geometry.\nvar geom = ee.FeatureCollection('EPA/Ecoregions/2013/L4')\n .filter('us_l4name == \"Santa Cruz Mountains\"').geometry();\n\n// Display layers on the map.\nMap.setCenter(-122.08, 37.22, 9);\nMap.addLayer(img, {min: 10000, max: 20000}, 'Landsat image');\nMap.addLayer(geom, {color: 'white'}, 'Santa Cruz Mountains ecoregion');\n\n// Calculate median band values within Santa Cruz Mountains ecoregion. It is\n// good practice to explicitly define \"scale\" (or \"crsTransform\") and \"crs\"\n// parameters of the analysis to avoid unexpected results from undesired\n// defaults when e.g. reducing a composite image.\nvar stats = img.reduceRegion({\n reducer: ee.Reducer.median(),\n geometry: geom,\n scale: 30, // meters\n crs: 'EPSG:3310', // California Albers projection\n});\n\n// A dictionary is returned; keys are band names, values are the statistic.\nprint('Median band values, Santa Cruz Mountains ecoregion', stats);\n\n// You can combine reducers to calculate e.g. mean and standard deviation\n// simultaneously. The output dictionary keys are the concatenation of the band\n// names and statistic names, separated by an underscore.\nvar reducer = ee.Reducer.mean().combine({\n reducer2: ee.Reducer.stdDev(),\n sharedInputs: true\n});\nvar multiStats = img.reduceRegion({\n reducer: reducer,\n geometry: geom,\n scale: 30,\n crs: 'EPSG:3310',\n});\nprint('Mean & SD band values, Santa Cruz Mountains ecoregion', multiStats);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.\nimg = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508').select(\n ['SR_B6', 'SR_B5', 'SR_B3']\n)\n\n# Santa Cruz Mountains ecoregion geometry.\ngeom = (\n ee.FeatureCollection('EPA/Ecoregions/2013/L4')\n .filter('us_l4name == \"Santa Cruz Mountains\"')\n .geometry()\n)\n\n# Display layers on the map.\nm = geemap.Map()\nm.set_center(-122.08, 37.22, 9)\nm.add_layer(img, {'min': 10000, 'max': 20000}, 'Landsat image')\nm.add_layer(geom, {'color': 'white'}, 'Santa Cruz Mountains ecoregion')\ndisplay(m)\n\n# Calculate median band values within Santa Cruz Mountains ecoregion. It is\n# good practice to explicitly define \"scale\" (or \"crsTransform\") and \"crs\"\n# parameters of the analysis to avoid unexpected results from undesired\n# defaults when e.g. reducing a composite image.\nstats = img.reduceRegion(\n reducer=ee.Reducer.median(),\n geometry=geom,\n scale=30, # meters\n crs='EPSG:3310', # California Albers projection\n)\n\n# A dictionary is returned keys are band names, values are the statistic.\ndisplay('Median band values, Santa Cruz Mountains ecoregion', stats)\n\n# You can combine reducers to calculate e.g. mean and standard deviation\n# simultaneously. The output dictionary keys are the concatenation of the band\n# names and statistic names, separated by an underscore.\nreducer = ee.Reducer.mean().combine(\n reducer2=ee.Reducer.stdDev(), sharedInputs=True\n)\nmulti_stats = img.reduceRegion(\n reducer=reducer,\n geometry=geom,\n scale=30,\n crs='EPSG:3310',\n)\ndisplay('Mean & SD band values, Santa Cruz Mountains ecoregion', multi_stats)\n```"]]