お知らせ:
2025 年 4 月 15 日より前に Earth Engine の使用を登録したすべての非商用プロジェクトは、Earth Engine へのアクセスを維持するために
非商用目的での利用資格を確認する必要があります。
ee.Image.reduceRegion
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
特定のリージョン内のすべてのピクセルにリデューサーを適用します。
リデューサーは、入力画像が持つバンドと同じ数の入力を持つか、単一の入力を持って各バンドに対して繰り返される必要があります。
リデューサーの出力のディクショナリを返します。
用途 | 戻り値 |
---|
Image.reduceRegion(reducer, geometry, scale, crs, crsTransform, bestEffort, maxPixels, tileScale) | Dictionary |
引数 | タイプ | 詳細 |
---|
これ: image | 画像 | 縮小する画像。 |
reducer | レデューサ | 適用するレデューサ。 |
geometry | Geometry、デフォルト: null | データを削減するリージョン。デフォルトは、画像の最初のバンドのフットプリントです。 |
scale | 浮動小数点数、デフォルト: null | 作業する投影のメートル単位の名義尺度。 |
crs | Projection、デフォルト: null | 作業する投影法。指定しない場合、イメージの最初のバンドの投影が使用されます。スケールに加えて指定された場合、指定されたスケールに再スケーリングされます。 |
crsTransform | リスト、デフォルト: null | CRS 変換値のリスト。これは 3x2 変換行列の行優先順序です。このオプションは「scale」と相互に排他的であり、投影にすでに設定されている変換を置き換えます。 |
bestEffort | ブール値。デフォルト値は false です。 | 指定されたスケールでポリゴンに含まれるピクセルが多すぎる場合は、より大きなスケールを計算して使用し、オペレーションを成功させます。 |
maxPixels | Long、デフォルト: 10000000 | 削減するピクセルの最大数。 |
tileScale | 浮動小数点数、デフォルト: 1 | 集計タイルのサイズを調整するために使用される 0.1 ~ 16 のスケーリング係数。tileScale を大きく設定すると(例: 2 または 4)では、タイルサイズが小さくなるため、デフォルトではメモリ不足になる計算を実行できる可能性があります。 |
例
コードエディタ(JavaScript)
// A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.
var img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')
.select(['SR_B6', 'SR_B5', 'SR_B3']);
// Santa Cruz Mountains ecoregion geometry.
var geom = ee.FeatureCollection('EPA/Ecoregions/2013/L4')
.filter('us_l4name == "Santa Cruz Mountains"').geometry();
// Display layers on the map.
Map.setCenter(-122.08, 37.22, 9);
Map.addLayer(img, {min: 10000, max: 20000}, 'Landsat image');
Map.addLayer(geom, {color: 'white'}, 'Santa Cruz Mountains ecoregion');
// Calculate median band values within Santa Cruz Mountains ecoregion. It is
// good practice to explicitly define "scale" (or "crsTransform") and "crs"
// parameters of the analysis to avoid unexpected results from undesired
// defaults when e.g. reducing a composite image.
var stats = img.reduceRegion({
reducer: ee.Reducer.median(),
geometry: geom,
scale: 30, // meters
crs: 'EPSG:3310', // California Albers projection
});
// A dictionary is returned; keys are band names, values are the statistic.
print('Median band values, Santa Cruz Mountains ecoregion', stats);
// You can combine reducers to calculate e.g. mean and standard deviation
// simultaneously. The output dictionary keys are the concatenation of the band
// names and statistic names, separated by an underscore.
var reducer = ee.Reducer.mean().combine({
reducer2: ee.Reducer.stdDev(),
sharedInputs: true
});
var multiStats = img.reduceRegion({
reducer: reducer,
geometry: geom,
scale: 30,
crs: 'EPSG:3310',
});
print('Mean & SD band values, Santa Cruz Mountains ecoregion', multiStats);
Python の設定
Python API とインタラクティブな開発での geemap
の使用については、
Python 環境のページをご覧ください。
import ee
import geemap.core as geemap
Colab(Python)
# A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.
img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508').select(
['SR_B6', 'SR_B5', 'SR_B3']
)
# Santa Cruz Mountains ecoregion geometry.
geom = (
ee.FeatureCollection('EPA/Ecoregions/2013/L4')
.filter('us_l4name == "Santa Cruz Mountains"')
.geometry()
)
# Display layers on the map.
m = geemap.Map()
m.set_center(-122.08, 37.22, 9)
m.add_layer(img, {'min': 10000, 'max': 20000}, 'Landsat image')
m.add_layer(geom, {'color': 'white'}, 'Santa Cruz Mountains ecoregion')
display(m)
# Calculate median band values within Santa Cruz Mountains ecoregion. It is
# good practice to explicitly define "scale" (or "crsTransform") and "crs"
# parameters of the analysis to avoid unexpected results from undesired
# defaults when e.g. reducing a composite image.
stats = img.reduceRegion(
reducer=ee.Reducer.median(),
geometry=geom,
scale=30, # meters
crs='EPSG:3310', # California Albers projection
)
# A dictionary is returned keys are band names, values are the statistic.
display('Median band values, Santa Cruz Mountains ecoregion', stats)
# You can combine reducers to calculate e.g. mean and standard deviation
# simultaneously. The output dictionary keys are the concatenation of the band
# names and statistic names, separated by an underscore.
reducer = ee.Reducer.mean().combine(
reducer2=ee.Reducer.stdDev(), sharedInputs=True
)
multi_stats = img.reduceRegion(
reducer=reducer,
geometry=geom,
scale=30,
crs='EPSG:3310',
)
display('Mean & SD band values, Santa Cruz Mountains ecoregion', multi_stats)
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-26 UTC。
[null,null,["最終更新日 2025-07-26 UTC。"],[[["\u003cp\u003e\u003ccode\u003eImage.reduceRegion()\u003c/code\u003e applies a reducer function to all pixels within a specified region of an image.\u003c/p\u003e\n"],["\u003cp\u003eThe reducer can either accept the same number of inputs as the image bands or a single input to be applied to each band.\u003c/p\u003e\n"],["\u003cp\u003eIt returns a dictionary containing the reducer's output, with keys representing band names and values corresponding to the calculated statistic.\u003c/p\u003e\n"],["\u003cp\u003eUsers can define parameters like scale, projection, and geometry to control the region and resolution of the reduction operation.\u003c/p\u003e\n"],["\u003cp\u003eMultiple reducers can be combined to calculate multiple statistics simultaneously, with output dictionary keys reflecting both band and statistic names.\u003c/p\u003e\n"]]],[],null,["# ee.Image.reduceRegion\n\nApply a reducer to all the pixels in a specific region.\n\n\u003cbr /\u003e\n\nEither the reducer must have the same number of inputs as the input image has bands, or it must have a single input and will be repeated for each band.\n\nReturns a dictionary of the reducer's outputs.\n\n| Usage | Returns |\n|---------------------------------------------------------------------------------------------------------------------------------------|------------|\n| Image.reduceRegion`(reducer, `*geometry* `, `*scale* `, `*crs* `, `*crsTransform* `, `*bestEffort* `, `*maxPixels* `, `*tileScale*`)` | Dictionary |\n\n| Argument | Type | Details |\n|----------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `image` | Image | The image to reduce. |\n| `reducer` | Reducer | The reducer to apply. |\n| `geometry` | Geometry, default: null | The region over which to reduce data. Defaults to the footprint of the image's first band. |\n| `scale` | Float, default: null | A nominal scale in meters of the projection to work in. |\n| `crs` | Projection, default: null | The projection to work in. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. |\n| `crsTransform` | List, default: null | The list of CRS transform values. This is a row-major ordering of the 3x2 transform matrix. This option is mutually exclusive with 'scale', and replaces any transform already set on the projection. |\n| `bestEffort` | Boolean, default: false | If the polygon would contain too many pixels at the given scale, compute and use a larger scale which would allow the operation to succeed. |\n| `maxPixels` | Long, default: 10000000 | The maximum number of pixels to reduce. |\n| `tileScale` | Float, default: 1 | A scaling factor between 0.1 and 16 used to adjust aggregation tile size; setting a larger tileScale (e.g., 2 or 4) uses smaller tiles and may enable computations that run out of memory with the default. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.\nvar img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')\n .select(['SR_B6', 'SR_B5', 'SR_B3']);\n\n// Santa Cruz Mountains ecoregion geometry.\nvar geom = ee.FeatureCollection('EPA/Ecoregions/2013/L4')\n .filter('us_l4name == \"Santa Cruz Mountains\"').geometry();\n\n// Display layers on the map.\nMap.setCenter(-122.08, 37.22, 9);\nMap.addLayer(img, {min: 10000, max: 20000}, 'Landsat image');\nMap.addLayer(geom, {color: 'white'}, 'Santa Cruz Mountains ecoregion');\n\n// Calculate median band values within Santa Cruz Mountains ecoregion. It is\n// good practice to explicitly define \"scale\" (or \"crsTransform\") and \"crs\"\n// parameters of the analysis to avoid unexpected results from undesired\n// defaults when e.g. reducing a composite image.\nvar stats = img.reduceRegion({\n reducer: ee.Reducer.median(),\n geometry: geom,\n scale: 30, // meters\n crs: 'EPSG:3310', // California Albers projection\n});\n\n// A dictionary is returned; keys are band names, values are the statistic.\nprint('Median band values, Santa Cruz Mountains ecoregion', stats);\n\n// You can combine reducers to calculate e.g. mean and standard deviation\n// simultaneously. The output dictionary keys are the concatenation of the band\n// names and statistic names, separated by an underscore.\nvar reducer = ee.Reducer.mean().combine({\n reducer2: ee.Reducer.stdDev(),\n sharedInputs: true\n});\nvar multiStats = img.reduceRegion({\n reducer: reducer,\n geometry: geom,\n scale: 30,\n crs: 'EPSG:3310',\n});\nprint('Mean & SD band values, Santa Cruz Mountains ecoregion', multiStats);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.\nimg = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508').select(\n ['SR_B6', 'SR_B5', 'SR_B3']\n)\n\n# Santa Cruz Mountains ecoregion geometry.\ngeom = (\n ee.FeatureCollection('EPA/Ecoregions/2013/L4')\n .filter('us_l4name == \"Santa Cruz Mountains\"')\n .geometry()\n)\n\n# Display layers on the map.\nm = geemap.Map()\nm.set_center(-122.08, 37.22, 9)\nm.add_layer(img, {'min': 10000, 'max': 20000}, 'Landsat image')\nm.add_layer(geom, {'color': 'white'}, 'Santa Cruz Mountains ecoregion')\ndisplay(m)\n\n# Calculate median band values within Santa Cruz Mountains ecoregion. It is\n# good practice to explicitly define \"scale\" (or \"crsTransform\") and \"crs\"\n# parameters of the analysis to avoid unexpected results from undesired\n# defaults when e.g. reducing a composite image.\nstats = img.reduceRegion(\n reducer=ee.Reducer.median(),\n geometry=geom,\n scale=30, # meters\n crs='EPSG:3310', # California Albers projection\n)\n\n# A dictionary is returned keys are band names, values are the statistic.\ndisplay('Median band values, Santa Cruz Mountains ecoregion', stats)\n\n# You can combine reducers to calculate e.g. mean and standard deviation\n# simultaneously. The output dictionary keys are the concatenation of the band\n# names and statistic names, separated by an underscore.\nreducer = ee.Reducer.mean().combine(\n reducer2=ee.Reducer.stdDev(), sharedInputs=True\n)\nmulti_stats = img.reduceRegion(\n reducer=reducer,\n geometry=geom,\n scale=30,\n crs='EPSG:3310',\n)\ndisplay('Mean & SD band values, Santa Cruz Mountains ecoregion', multi_stats)\n```"]]