Announcement: All noncommercial projects registered to use Earth Engine before
April 15, 2025 must
verify noncommercial eligibility to maintain Earth Engine access.
ee.ImageCollection.aggregate_array
Stay organized with collections
Save and categorize content based on your preferences.
Aggregates over a given property of the objects in a collection, calculating a list of all the values of the selected property.
Usage | Returns | ImageCollection.aggregate_array(property) | List |
Argument | Type | Details | this: collection | FeatureCollection | The collection to aggregate over. |
property | String | The property to use from each element of the collection. |
Examples
Code Editor (JavaScript)
// A Lansat 8 TOA image collection for a specific year and location.
var col = ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA")
.filterBounds(ee.Geometry.Point([-122.073, 37.188]))
.filterDate('2018', '2019');
// An image property of interest, percent cloud cover in this case.
var prop = 'CLOUD_COVER';
// Use ee.ImageCollection.aggregate_* functions to fetch information about
// values of a selected property across all images in the collection. For
// example, produce a list of all values, get counts, and calculate statistics.
print('List of property values', col.aggregate_array(prop));
print('Count of property values', col.aggregate_count(prop));
print('Count of distinct property values', col.aggregate_count_distinct(prop));
print('First collection element property value', col.aggregate_first(prop));
print('Histogram of property values', col.aggregate_histogram(prop));
print('Min of property values', col.aggregate_min(prop));
print('Max of property values', col.aggregate_max(prop));
// The following methods are applicable to numerical properties only.
print('Mean of property values', col.aggregate_mean(prop));
print('Sum of property values', col.aggregate_sum(prop));
print('Product of property values', col.aggregate_product(prop));
print('Std dev (sample) of property values', col.aggregate_sample_sd(prop));
print('Variance (sample) of property values', col.aggregate_sample_var(prop));
print('Std dev (total) of property values', col.aggregate_total_sd(prop));
print('Variance (total) of property values', col.aggregate_total_var(prop));
print('Summary stats of property values', col.aggregate_stats(prop));
// Note that if the property is formatted as a string, min and max will
// respectively return the first and last values according to alphanumeric
// order of the property values.
var propString = 'LANDSAT_SCENE_ID';
print('List of property values (string)', col.aggregate_array(propString));
print('Min of property values (string)', col.aggregate_min(propString));
print('Max of property values (string)', col.aggregate_max(propString));
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# A Lansat 8 TOA image collection for a specific year and location.
col = ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA").filterBounds(
ee.Geometry.Point([-122.073, 37.188])).filterDate('2018', '2019')
# An image property of interest, percent cloud cover in this case.
prop = 'CLOUD_COVER'
# Use ee.ImageCollection.aggregate_* functions to fetch information about
# values of a selected property across all images in the collection. For
# example, produce a list of all values, get counts, and calculate statistics.
print('List of property values:', col.aggregate_array(prop).getInfo())
print('Count of property values:', col.aggregate_count(prop).getInfo())
print('Count of distinct property values:',
col.aggregate_count_distinct(prop).getInfo())
print('First collection element property value:',
col.aggregate_first(prop).getInfo())
print('Histogram of property values:')
pprint(col.aggregate_histogram(prop).getInfo())
print('Min of property values:', col.aggregate_min(prop).getInfo())
print('Max of property values:', col.aggregate_max(prop).getInfo())
# The following methods are applicable to numerical properties only.
print('Mean of property values:',
col.aggregate_mean(prop).getInfo())
print('Sum of property values:',
col.aggregate_sum(prop).getInfo())
print('Product of property values:',
col.aggregate_product(prop).getInfo())
print('Std dev (sample) of property values:',
col.aggregate_sample_sd(prop).getInfo())
print('Variance (sample) of property values:',
col.aggregate_sample_var(prop).getInfo())
print('Std dev (total) of property values:',
col.aggregate_total_sd(prop).getInfo())
print('Variance (total) of property values:',
col.aggregate_total_var(prop).getInfo())
print('Summary stats of property values:')
pprint(col.aggregate_stats(prop).getInfo())
# Note that if the property is formatted as a string, min and max will
# respectively return the first and last values according to alphanumeric
# order of the property values.
prop_string = 'LANDSAT_SCENE_ID'
print('List of property values (string):',
col.aggregate_array(prop_string).getInfo())
print('Min of property values (string):',
col.aggregate_min(prop_string).getInfo())
print('Max of property values (string):',
col.aggregate_max(prop_string).getInfo())
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[[["\u003cp\u003e\u003ccode\u003eaggregate_array\u003c/code\u003e compiles a list of all values for a specified property within an ImageCollection.\u003c/p\u003e\n"],["\u003cp\u003eThis function is applied to an ImageCollection and requires the property name as input.\u003c/p\u003e\n"],["\u003cp\u003eIt returns a list of all the values of the specified property across all images in the collection.\u003c/p\u003e\n"],["\u003cp\u003eUseful for analyzing the distribution and range of property values within a collection.\u003c/p\u003e\n"]]],[],null,["# ee.ImageCollection.aggregate_array\n\nAggregates over a given property of the objects in a collection, calculating a list of all the values of the selected property.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|---------------------------------------------|---------|\n| ImageCollection.aggregate_array`(property)` | List |\n\n| Argument | Type | Details |\n|--------------------|-------------------|----------------------------------------------------------|\n| this: `collection` | FeatureCollection | The collection to aggregate over. |\n| `property` | String | The property to use from each element of the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Lansat 8 TOA image collection for a specific year and location.\nvar col = ee.ImageCollection(\"LANDSAT/LC08/C02/T1_TOA\")\n .filterBounds(ee.Geometry.Point([-122.073, 37.188]))\n .filterDate('2018', '2019');\n\n// An image property of interest, percent cloud cover in this case.\nvar prop = 'CLOUD_COVER';\n\n// Use ee.ImageCollection.aggregate_* functions to fetch information about\n// values of a selected property across all images in the collection. For\n// example, produce a list of all values, get counts, and calculate statistics.\nprint('List of property values', col.aggregate_array(prop));\nprint('Count of property values', col.aggregate_count(prop));\nprint('Count of distinct property values', col.aggregate_count_distinct(prop));\nprint('First collection element property value', col.aggregate_first(prop));\nprint('Histogram of property values', col.aggregate_histogram(prop));\nprint('Min of property values', col.aggregate_min(prop));\nprint('Max of property values', col.aggregate_max(prop));\n\n// The following methods are applicable to numerical properties only.\nprint('Mean of property values', col.aggregate_mean(prop));\nprint('Sum of property values', col.aggregate_sum(prop));\nprint('Product of property values', col.aggregate_product(prop));\nprint('Std dev (sample) of property values', col.aggregate_sample_sd(prop));\nprint('Variance (sample) of property values', col.aggregate_sample_var(prop));\nprint('Std dev (total) of property values', col.aggregate_total_sd(prop));\nprint('Variance (total) of property values', col.aggregate_total_var(prop));\nprint('Summary stats of property values', col.aggregate_stats(prop));\n\n// Note that if the property is formatted as a string, min and max will\n// respectively return the first and last values according to alphanumeric\n// order of the property values.\nvar propString = 'LANDSAT_SCENE_ID';\nprint('List of property values (string)', col.aggregate_array(propString));\nprint('Min of property values (string)', col.aggregate_min(propString));\nprint('Max of property values (string)', col.aggregate_max(propString));\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\n# A Lansat 8 TOA image collection for a specific year and location.\ncol = ee.ImageCollection(\"LANDSAT/LC08/C02/T1_TOA\").filterBounds(\n ee.Geometry.Point([-122.073, 37.188])).filterDate('2018', '2019')\n\n# An image property of interest, percent cloud cover in this case.\nprop = 'CLOUD_COVER'\n\n# Use ee.ImageCollection.aggregate_* functions to fetch information about\n# values of a selected property across all images in the collection. For\n# example, produce a list of all values, get counts, and calculate statistics.\nprint('List of property values:', col.aggregate_array(prop).getInfo())\nprint('Count of property values:', col.aggregate_count(prop).getInfo())\nprint('Count of distinct property values:',\n col.aggregate_count_distinct(prop).getInfo())\nprint('First collection element property value:',\n col.aggregate_first(prop).getInfo())\nprint('Histogram of property values:')\npprint(col.aggregate_histogram(prop).getInfo())\nprint('Min of property values:', col.aggregate_min(prop).getInfo())\nprint('Max of property values:', col.aggregate_max(prop).getInfo())\n\n# The following methods are applicable to numerical properties only.\nprint('Mean of property values:',\n col.aggregate_mean(prop).getInfo())\nprint('Sum of property values:',\n col.aggregate_sum(prop).getInfo())\nprint('Product of property values:',\n col.aggregate_product(prop).getInfo())\nprint('Std dev (sample) of property values:',\n col.aggregate_sample_sd(prop).getInfo())\nprint('Variance (sample) of property values:',\n col.aggregate_sample_var(prop).getInfo())\nprint('Std dev (total) of property values:',\n col.aggregate_total_sd(prop).getInfo())\nprint('Variance (total) of property values:',\n col.aggregate_total_var(prop).getInfo())\nprint('Summary stats of property values:')\npprint(col.aggregate_stats(prop).getInfo())\n\n# Note that if the property is formatted as a string, min and max will\n# respectively return the first and last values according to alphanumeric\n# order of the property values.\nprop_string = 'LANDSAT_SCENE_ID'\nprint('List of property values (string):',\n col.aggregate_array(prop_string).getInfo())\nprint('Min of property values (string):',\n col.aggregate_min(prop_string).getInfo())\nprint('Max of property values (string):',\n col.aggregate_max(prop_string).getInfo())\n```"]]