ee.ImageCollection.qualityMosaic
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Fügt alle Bilder in einer Sammlung zusammen und verwendet dabei ein Qualitätsband als pixelweise Sortierfunktion.
Nutzung | Ausgabe |
---|
ImageCollection.qualityMosaic(qualityBand) | Bild |
Argument | Typ | Details |
---|
So gehts: collection | ImageCollection | Die Sammlung, die mosaikiert werden soll. |
qualityBand | String | Der Name des Qualitätsbereichs in der Sammlung. |
Beispiele
Code-Editor (JavaScript)
// The goal is to generate a best-pixel mosaic from a collection of
// Sentinel-2 images where pixel quality is based on a cloud probability score.
// The qualityMosaic() function selects the image (per-pixel) with the HIGHEST
// quality-band-score to contribute to the resulting mosaic. All bands from the
// selected image (per-pixel) associated with the HIGHEST quality-band-score
// are included in the output.
// A Sentinel-2 SR image collection (2 months of images at a specific point).
var col = ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')
.filterBounds(ee.Geometry.Point(-103.19, 40.14))
.filterDate('2020-07-01', '2020-09-01');
// Because cloud probability ranges from 0 to 100 percent (low to high), we need
// to invert the MSK_CLDPRB band values so that low cloud probability pixels
// indicate high quality. Here, an inverting function is mapped over the
// image collection, the inverted MSK_CLDPRB band is added as a "quality" band.
col = col.map(function(img) {
var cldProb = img.select('MSK_CLDPRB');
var cldProbInv = cldProb.multiply(-1).rename('quality');
return img.addBands(cldProbInv);
});
// Image visualization settings.
var visParams = {
bands: ['B4', 'B3', 'B2'],
min: 0,
max: 4500
};
Map.setCenter(-103.19, 40.14, 9);
Map.addLayer(col, visParams, 'Collection (for series inspection)', false);
// Generate a best-pixel mosaic from the image collection.
var img = col.qualityMosaic('quality');
Map.addLayer(img, visParams, 'Best-pixel mosaic (by cloud score)');
// To build the worst-pixel mosaic, according to cloud probability, use the
// MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud
// probability score).
var img = col.qualityMosaic('MSK_CLDPRB');
Map.addLayer(img, visParams, 'Worst-pixel mosaic (by cloud score)', false);
Python einrichten
Informationen zur Python API und zur Verwendung von geemap
für die interaktive Entwicklung finden Sie auf der Seite
Python-Umgebung.
import ee
import geemap.core as geemap
Colab (Python)
# The goal is to generate a best-pixel mosaic from a collection of
# Sentinel-2 images where pixel quality is based on a cloud probability score.
# The qualityMosaic() function selects the image (per-pixel) with the HIGHEST
# quality-band-score to contribute to the resulting mosaic. All bands from the
# selected image (per-pixel) associated with the HIGHEST quality-band-score
# are included in the output.
# A Sentinel-2 SR image collection (2 months of images at a specific point).
col = (
ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')
.filterBounds(ee.Geometry.Point(-103.19, 40.14))
.filterDate('2020-07-01', '2020-09-01')
)
# Because cloud probability ranges from 0 to 100 percent (low to high), we need
# to invert the MSK_CLDPRB band values so that low cloud probability pixels
# indicate high quality. Here, an inverting function is mapped over the
# image collection, the inverted MSK_CLDPRB band is added as a "quality" band.
def invertCloudProbabilityBand(img):
cldProb = img.select('MSK_CLDPRB')
cldProbInv = cldProb.multiply(-1).rename('quality')
return img.addBands(cldProbInv)
col = col.map(invertCloudProbabilityBand)
# Image visualization settings.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 4500}
m = geemap.Map()
m.set_center(-103.19, 40.14, 9)
m.add_layer(col, vis_params, 'Collection (for series inspection)', False)
# Generate a best-pixel mosaic from the image collection.
img = col.qualityMosaic('quality')
m.add_layer(img, vis_params, 'Best-pixel mosaic (by cloud score)')
# To build the worst-pixel mosaic, according to cloud probability, use the
# MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud
# probability score).
img = col.qualityMosaic('MSK_CLDPRB')
m.add_layer(img, vis_params, 'Worst-pixel mosaic (by cloud score)', False)
m
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-07-27 (UTC).
[null,null,["Zuletzt aktualisiert: 2025-07-27 (UTC)."],[[["\u003cp\u003e\u003ccode\u003equalityMosaic()\u003c/code\u003e composites images in a collection based on a specified quality band, selecting the highest quality pixel for each location in the output mosaic.\u003c/p\u003e\n"],["\u003cp\u003eThe 'quality band' is a band within the image collection that represents the desired quality metric (e.g., cloud probability, NDVI).\u003c/p\u003e\n"],["\u003cp\u003eThe function returns a single image where each pixel is chosen from the input image with the highest value in the quality band at that location.\u003c/p\u003e\n"],["\u003cp\u003eYou can manipulate the quality band (e.g., inverting cloud probability) to prioritize different pixel selection criteria.\u003c/p\u003e\n"]]],[],null,["# ee.ImageCollection.qualityMosaic\n\nComposites all the images in a collection, using a quality band as a per-pixel ordering function.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|----------------------------------------------|---------|\n| ImageCollection.qualityMosaic`(qualityBand)` | Image |\n\n| Argument | Type | Details |\n|--------------------|-----------------|-------------------------------------------------|\n| this: `collection` | ImageCollection | The collection to mosaic. |\n| `qualityBand` | String | The name of the quality band in the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// The goal is to generate a best-pixel mosaic from a collection of\n// Sentinel-2 images where pixel quality is based on a cloud probability score.\n// The qualityMosaic() function selects the image (per-pixel) with the HIGHEST\n// quality-band-score to contribute to the resulting mosaic. All bands from the\n// selected image (per-pixel) associated with the HIGHEST quality-band-score\n// are included in the output.\n\n// A Sentinel-2 SR image collection (2 months of images at a specific point).\nvar col = ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')\n .filterBounds(ee.Geometry.Point(-103.19, 40.14))\n .filterDate('2020-07-01', '2020-09-01');\n\n// Because cloud probability ranges from 0 to 100 percent (low to high), we need\n// to invert the MSK_CLDPRB band values so that low cloud probability pixels\n// indicate high quality. Here, an inverting function is mapped over the\n// image collection, the inverted MSK_CLDPRB band is added as a \"quality\" band.\ncol = col.map(function(img) {\n var cldProb = img.select('MSK_CLDPRB');\n var cldProbInv = cldProb.multiply(-1).rename('quality');\n return img.addBands(cldProbInv);\n});\n\n// Image visualization settings.\nvar visParams = {\n bands: ['B4', 'B3', 'B2'],\n min: 0,\n max: 4500\n};\nMap.setCenter(-103.19, 40.14, 9);\nMap.addLayer(col, visParams, 'Collection (for series inspection)', false);\n\n// Generate a best-pixel mosaic from the image collection.\nvar img = col.qualityMosaic('quality');\nMap.addLayer(img, visParams, 'Best-pixel mosaic (by cloud score)');\n\n// To build the worst-pixel mosaic, according to cloud probability, use the\n// MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud\n// probability score).\nvar img = col.qualityMosaic('MSK_CLDPRB');\nMap.addLayer(img, visParams, 'Worst-pixel mosaic (by cloud score)', false);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# The goal is to generate a best-pixel mosaic from a collection of\n# Sentinel-2 images where pixel quality is based on a cloud probability score.\n# The qualityMosaic() function selects the image (per-pixel) with the HIGHEST\n# quality-band-score to contribute to the resulting mosaic. All bands from the\n# selected image (per-pixel) associated with the HIGHEST quality-band-score\n# are included in the output.\n\n# A Sentinel-2 SR image collection (2 months of images at a specific point).\ncol = (\n ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')\n .filterBounds(ee.Geometry.Point(-103.19, 40.14))\n .filterDate('2020-07-01', '2020-09-01')\n)\n\n# Because cloud probability ranges from 0 to 100 percent (low to high), we need\n# to invert the MSK_CLDPRB band values so that low cloud probability pixels\n# indicate high quality. Here, an inverting function is mapped over the\n# image collection, the inverted MSK_CLDPRB band is added as a \"quality\" band.\ndef invertCloudProbabilityBand(img):\n cldProb = img.select('MSK_CLDPRB')\n cldProbInv = cldProb.multiply(-1).rename('quality')\n return img.addBands(cldProbInv)\n\ncol = col.map(invertCloudProbabilityBand)\n\n# Image visualization settings.\nvis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 4500}\nm = geemap.Map()\nm.set_center(-103.19, 40.14, 9)\nm.add_layer(col, vis_params, 'Collection (for series inspection)', False)\n\n# Generate a best-pixel mosaic from the image collection.\nimg = col.qualityMosaic('quality')\nm.add_layer(img, vis_params, 'Best-pixel mosaic (by cloud score)')\n\n# To build the worst-pixel mosaic, according to cloud probability, use the\n# MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud\n# probability score).\nimg = col.qualityMosaic('MSK_CLDPRB')\nm.add_layer(img, vis_params, 'Worst-pixel mosaic (by cloud score)', False)\nm\n```"]]