ee.ImageCollection.qualityMosaic
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Compose toutes les images d'une collection, en utilisant une bande de qualité comme fonction d'ordonnancement par pixel.
Utilisation | Renvoie |
---|
ImageCollection.qualityMosaic(qualityBand) | Image |
Argument | Type | Détails |
---|
ceci : collection | ImageCollection | Collection à mosaïquer. |
qualityBand | Chaîne | Nom de la bande de qualité dans la collection. |
Exemples
Éditeur de code (JavaScript)
// The goal is to generate a best-pixel mosaic from a collection of
// Sentinel-2 images where pixel quality is based on a cloud probability score.
// The qualityMosaic() function selects the image (per-pixel) with the HIGHEST
// quality-band-score to contribute to the resulting mosaic. All bands from the
// selected image (per-pixel) associated with the HIGHEST quality-band-score
// are included in the output.
// A Sentinel-2 SR image collection (2 months of images at a specific point).
var col = ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')
.filterBounds(ee.Geometry.Point(-103.19, 40.14))
.filterDate('2020-07-01', '2020-09-01');
// Because cloud probability ranges from 0 to 100 percent (low to high), we need
// to invert the MSK_CLDPRB band values so that low cloud probability pixels
// indicate high quality. Here, an inverting function is mapped over the
// image collection, the inverted MSK_CLDPRB band is added as a "quality" band.
col = col.map(function(img) {
var cldProb = img.select('MSK_CLDPRB');
var cldProbInv = cldProb.multiply(-1).rename('quality');
return img.addBands(cldProbInv);
});
// Image visualization settings.
var visParams = {
bands: ['B4', 'B3', 'B2'],
min: 0,
max: 4500
};
Map.setCenter(-103.19, 40.14, 9);
Map.addLayer(col, visParams, 'Collection (for series inspection)', false);
// Generate a best-pixel mosaic from the image collection.
var img = col.qualityMosaic('quality');
Map.addLayer(img, visParams, 'Best-pixel mosaic (by cloud score)');
// To build the worst-pixel mosaic, according to cloud probability, use the
// MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud
// probability score).
var img = col.qualityMosaic('MSK_CLDPRB');
Map.addLayer(img, visParams, 'Worst-pixel mosaic (by cloud score)', false);
Configuration de Python
Consultez la page
Environnement Python pour en savoir plus sur l'API Python et sur l'utilisation de geemap
pour le développement interactif.
import ee
import geemap.core as geemap
Colab (Python)
# The goal is to generate a best-pixel mosaic from a collection of
# Sentinel-2 images where pixel quality is based on a cloud probability score.
# The qualityMosaic() function selects the image (per-pixel) with the HIGHEST
# quality-band-score to contribute to the resulting mosaic. All bands from the
# selected image (per-pixel) associated with the HIGHEST quality-band-score
# are included in the output.
# A Sentinel-2 SR image collection (2 months of images at a specific point).
col = (
ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')
.filterBounds(ee.Geometry.Point(-103.19, 40.14))
.filterDate('2020-07-01', '2020-09-01')
)
# Because cloud probability ranges from 0 to 100 percent (low to high), we need
# to invert the MSK_CLDPRB band values so that low cloud probability pixels
# indicate high quality. Here, an inverting function is mapped over the
# image collection, the inverted MSK_CLDPRB band is added as a "quality" band.
def invertCloudProbabilityBand(img):
cldProb = img.select('MSK_CLDPRB')
cldProbInv = cldProb.multiply(-1).rename('quality')
return img.addBands(cldProbInv)
col = col.map(invertCloudProbabilityBand)
# Image visualization settings.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 4500}
m = geemap.Map()
m.set_center(-103.19, 40.14, 9)
m.add_layer(col, vis_params, 'Collection (for series inspection)', False)
# Generate a best-pixel mosaic from the image collection.
img = col.qualityMosaic('quality')
m.add_layer(img, vis_params, 'Best-pixel mosaic (by cloud score)')
# To build the worst-pixel mosaic, according to cloud probability, use the
# MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud
# probability score).
img = col.qualityMosaic('MSK_CLDPRB')
m.add_layer(img, vis_params, 'Worst-pixel mosaic (by cloud score)', False)
m
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[[["\u003cp\u003e\u003ccode\u003equalityMosaic()\u003c/code\u003e composites images in a collection based on a specified quality band, selecting the highest quality pixel for each location in the output mosaic.\u003c/p\u003e\n"],["\u003cp\u003eThe 'quality band' is a band within the image collection that represents the desired quality metric (e.g., cloud probability, NDVI).\u003c/p\u003e\n"],["\u003cp\u003eThe function returns a single image where each pixel is chosen from the input image with the highest value in the quality band at that location.\u003c/p\u003e\n"],["\u003cp\u003eYou can manipulate the quality band (e.g., inverting cloud probability) to prioritize different pixel selection criteria.\u003c/p\u003e\n"]]],[],null,["# ee.ImageCollection.qualityMosaic\n\nComposites all the images in a collection, using a quality band as a per-pixel ordering function.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|----------------------------------------------|---------|\n| ImageCollection.qualityMosaic`(qualityBand)` | Image |\n\n| Argument | Type | Details |\n|--------------------|-----------------|-------------------------------------------------|\n| this: `collection` | ImageCollection | The collection to mosaic. |\n| `qualityBand` | String | The name of the quality band in the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// The goal is to generate a best-pixel mosaic from a collection of\n// Sentinel-2 images where pixel quality is based on a cloud probability score.\n// The qualityMosaic() function selects the image (per-pixel) with the HIGHEST\n// quality-band-score to contribute to the resulting mosaic. All bands from the\n// selected image (per-pixel) associated with the HIGHEST quality-band-score\n// are included in the output.\n\n// A Sentinel-2 SR image collection (2 months of images at a specific point).\nvar col = ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')\n .filterBounds(ee.Geometry.Point(-103.19, 40.14))\n .filterDate('2020-07-01', '2020-09-01');\n\n// Because cloud probability ranges from 0 to 100 percent (low to high), we need\n// to invert the MSK_CLDPRB band values so that low cloud probability pixels\n// indicate high quality. Here, an inverting function is mapped over the\n// image collection, the inverted MSK_CLDPRB band is added as a \"quality\" band.\ncol = col.map(function(img) {\n var cldProb = img.select('MSK_CLDPRB');\n var cldProbInv = cldProb.multiply(-1).rename('quality');\n return img.addBands(cldProbInv);\n});\n\n// Image visualization settings.\nvar visParams = {\n bands: ['B4', 'B3', 'B2'],\n min: 0,\n max: 4500\n};\nMap.setCenter(-103.19, 40.14, 9);\nMap.addLayer(col, visParams, 'Collection (for series inspection)', false);\n\n// Generate a best-pixel mosaic from the image collection.\nvar img = col.qualityMosaic('quality');\nMap.addLayer(img, visParams, 'Best-pixel mosaic (by cloud score)');\n\n// To build the worst-pixel mosaic, according to cloud probability, use the\n// MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud\n// probability score).\nvar img = col.qualityMosaic('MSK_CLDPRB');\nMap.addLayer(img, visParams, 'Worst-pixel mosaic (by cloud score)', false);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# The goal is to generate a best-pixel mosaic from a collection of\n# Sentinel-2 images where pixel quality is based on a cloud probability score.\n# The qualityMosaic() function selects the image (per-pixel) with the HIGHEST\n# quality-band-score to contribute to the resulting mosaic. All bands from the\n# selected image (per-pixel) associated with the HIGHEST quality-band-score\n# are included in the output.\n\n# A Sentinel-2 SR image collection (2 months of images at a specific point).\ncol = (\n ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')\n .filterBounds(ee.Geometry.Point(-103.19, 40.14))\n .filterDate('2020-07-01', '2020-09-01')\n)\n\n# Because cloud probability ranges from 0 to 100 percent (low to high), we need\n# to invert the MSK_CLDPRB band values so that low cloud probability pixels\n# indicate high quality. Here, an inverting function is mapped over the\n# image collection, the inverted MSK_CLDPRB band is added as a \"quality\" band.\ndef invertCloudProbabilityBand(img):\n cldProb = img.select('MSK_CLDPRB')\n cldProbInv = cldProb.multiply(-1).rename('quality')\n return img.addBands(cldProbInv)\n\ncol = col.map(invertCloudProbabilityBand)\n\n# Image visualization settings.\nvis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 4500}\nm = geemap.Map()\nm.set_center(-103.19, 40.14, 9)\nm.add_layer(col, vis_params, 'Collection (for series inspection)', False)\n\n# Generate a best-pixel mosaic from the image collection.\nimg = col.qualityMosaic('quality')\nm.add_layer(img, vis_params, 'Best-pixel mosaic (by cloud score)')\n\n# To build the worst-pixel mosaic, according to cloud probability, use the\n# MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud\n# probability score).\nimg = col.qualityMosaic('MSK_CLDPRB')\nm.add_layer(img, vis_params, 'Worst-pixel mosaic (by cloud score)', False)\nm\n```"]]