공지사항:
2025년 4월 15일 전에 Earth Engine 사용을 위해 등록된 모든 비상업용 프로젝트는 Earth Engine 액세스를 유지하기 위해
비상업용 자격 요건을 인증해야 합니다.
ee.ImageCollection.qualityMosaic
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
품질 대역을 픽셀별 순서 지정 함수로 사용하여 컬렉션의 모든 이미지를 합성합니다.
사용 | 반환 값 |
---|
ImageCollection.qualityMosaic(qualityBand) | 이미지 |
인수 | 유형 | 세부정보 |
---|
다음과 같은 경우: collection | ImageCollection | 모자이크할 컬렉션입니다. |
qualityBand | 문자열 | 컬렉션의 품질 대역 이름입니다. |
예
코드 편집기 (JavaScript)
// The goal is to generate a best-pixel mosaic from a collection of
// Sentinel-2 images where pixel quality is based on a cloud probability score.
// The qualityMosaic() function selects the image (per-pixel) with the HIGHEST
// quality-band-score to contribute to the resulting mosaic. All bands from the
// selected image (per-pixel) associated with the HIGHEST quality-band-score
// are included in the output.
// A Sentinel-2 SR image collection (2 months of images at a specific point).
var col = ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')
.filterBounds(ee.Geometry.Point(-103.19, 40.14))
.filterDate('2020-07-01', '2020-09-01');
// Because cloud probability ranges from 0 to 100 percent (low to high), we need
// to invert the MSK_CLDPRB band values so that low cloud probability pixels
// indicate high quality. Here, an inverting function is mapped over the
// image collection, the inverted MSK_CLDPRB band is added as a "quality" band.
col = col.map(function(img) {
var cldProb = img.select('MSK_CLDPRB');
var cldProbInv = cldProb.multiply(-1).rename('quality');
return img.addBands(cldProbInv);
});
// Image visualization settings.
var visParams = {
bands: ['B4', 'B3', 'B2'],
min: 0,
max: 4500
};
Map.setCenter(-103.19, 40.14, 9);
Map.addLayer(col, visParams, 'Collection (for series inspection)', false);
// Generate a best-pixel mosaic from the image collection.
var img = col.qualityMosaic('quality');
Map.addLayer(img, visParams, 'Best-pixel mosaic (by cloud score)');
// To build the worst-pixel mosaic, according to cloud probability, use the
// MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud
// probability score).
var img = col.qualityMosaic('MSK_CLDPRB');
Map.addLayer(img, visParams, 'Worst-pixel mosaic (by cloud score)', false);
Python 설정
Python API 및 geemap
를 사용한 대화형 개발에 관한 자세한 내용은
Python 환경 페이지를 참고하세요.
import ee
import geemap.core as geemap
Colab (Python)
# The goal is to generate a best-pixel mosaic from a collection of
# Sentinel-2 images where pixel quality is based on a cloud probability score.
# The qualityMosaic() function selects the image (per-pixel) with the HIGHEST
# quality-band-score to contribute to the resulting mosaic. All bands from the
# selected image (per-pixel) associated with the HIGHEST quality-band-score
# are included in the output.
# A Sentinel-2 SR image collection (2 months of images at a specific point).
col = (
ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')
.filterBounds(ee.Geometry.Point(-103.19, 40.14))
.filterDate('2020-07-01', '2020-09-01')
)
# Because cloud probability ranges from 0 to 100 percent (low to high), we need
# to invert the MSK_CLDPRB band values so that low cloud probability pixels
# indicate high quality. Here, an inverting function is mapped over the
# image collection, the inverted MSK_CLDPRB band is added as a "quality" band.
def invertCloudProbabilityBand(img):
cldProb = img.select('MSK_CLDPRB')
cldProbInv = cldProb.multiply(-1).rename('quality')
return img.addBands(cldProbInv)
col = col.map(invertCloudProbabilityBand)
# Image visualization settings.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 4500}
m = geemap.Map()
m.set_center(-103.19, 40.14, 9)
m.add_layer(col, vis_params, 'Collection (for series inspection)', False)
# Generate a best-pixel mosaic from the image collection.
img = col.qualityMosaic('quality')
m.add_layer(img, vis_params, 'Best-pixel mosaic (by cloud score)')
# To build the worst-pixel mosaic, according to cloud probability, use the
# MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud
# probability score).
img = col.qualityMosaic('MSK_CLDPRB')
m.add_layer(img, vis_params, 'Worst-pixel mosaic (by cloud score)', False)
m
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-27(UTC)
[null,null,["최종 업데이트: 2025-07-27(UTC)"],[[["\u003cp\u003e\u003ccode\u003equalityMosaic()\u003c/code\u003e composites images in a collection based on a specified quality band, selecting the highest quality pixel for each location in the output mosaic.\u003c/p\u003e\n"],["\u003cp\u003eThe 'quality band' is a band within the image collection that represents the desired quality metric (e.g., cloud probability, NDVI).\u003c/p\u003e\n"],["\u003cp\u003eThe function returns a single image where each pixel is chosen from the input image with the highest value in the quality band at that location.\u003c/p\u003e\n"],["\u003cp\u003eYou can manipulate the quality band (e.g., inverting cloud probability) to prioritize different pixel selection criteria.\u003c/p\u003e\n"]]],[],null,["# ee.ImageCollection.qualityMosaic\n\nComposites all the images in a collection, using a quality band as a per-pixel ordering function.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|----------------------------------------------|---------|\n| ImageCollection.qualityMosaic`(qualityBand)` | Image |\n\n| Argument | Type | Details |\n|--------------------|-----------------|-------------------------------------------------|\n| this: `collection` | ImageCollection | The collection to mosaic. |\n| `qualityBand` | String | The name of the quality band in the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// The goal is to generate a best-pixel mosaic from a collection of\n// Sentinel-2 images where pixel quality is based on a cloud probability score.\n// The qualityMosaic() function selects the image (per-pixel) with the HIGHEST\n// quality-band-score to contribute to the resulting mosaic. All bands from the\n// selected image (per-pixel) associated with the HIGHEST quality-band-score\n// are included in the output.\n\n// A Sentinel-2 SR image collection (2 months of images at a specific point).\nvar col = ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')\n .filterBounds(ee.Geometry.Point(-103.19, 40.14))\n .filterDate('2020-07-01', '2020-09-01');\n\n// Because cloud probability ranges from 0 to 100 percent (low to high), we need\n// to invert the MSK_CLDPRB band values so that low cloud probability pixels\n// indicate high quality. Here, an inverting function is mapped over the\n// image collection, the inverted MSK_CLDPRB band is added as a \"quality\" band.\ncol = col.map(function(img) {\n var cldProb = img.select('MSK_CLDPRB');\n var cldProbInv = cldProb.multiply(-1).rename('quality');\n return img.addBands(cldProbInv);\n});\n\n// Image visualization settings.\nvar visParams = {\n bands: ['B4', 'B3', 'B2'],\n min: 0,\n max: 4500\n};\nMap.setCenter(-103.19, 40.14, 9);\nMap.addLayer(col, visParams, 'Collection (for series inspection)', false);\n\n// Generate a best-pixel mosaic from the image collection.\nvar img = col.qualityMosaic('quality');\nMap.addLayer(img, visParams, 'Best-pixel mosaic (by cloud score)');\n\n// To build the worst-pixel mosaic, according to cloud probability, use the\n// MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud\n// probability score).\nvar img = col.qualityMosaic('MSK_CLDPRB');\nMap.addLayer(img, visParams, 'Worst-pixel mosaic (by cloud score)', false);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# The goal is to generate a best-pixel mosaic from a collection of\n# Sentinel-2 images where pixel quality is based on a cloud probability score.\n# The qualityMosaic() function selects the image (per-pixel) with the HIGHEST\n# quality-band-score to contribute to the resulting mosaic. All bands from the\n# selected image (per-pixel) associated with the HIGHEST quality-band-score\n# are included in the output.\n\n# A Sentinel-2 SR image collection (2 months of images at a specific point).\ncol = (\n ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')\n .filterBounds(ee.Geometry.Point(-103.19, 40.14))\n .filterDate('2020-07-01', '2020-09-01')\n)\n\n# Because cloud probability ranges from 0 to 100 percent (low to high), we need\n# to invert the MSK_CLDPRB band values so that low cloud probability pixels\n# indicate high quality. Here, an inverting function is mapped over the\n# image collection, the inverted MSK_CLDPRB band is added as a \"quality\" band.\ndef invertCloudProbabilityBand(img):\n cldProb = img.select('MSK_CLDPRB')\n cldProbInv = cldProb.multiply(-1).rename('quality')\n return img.addBands(cldProbInv)\n\ncol = col.map(invertCloudProbabilityBand)\n\n# Image visualization settings.\nvis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 4500}\nm = geemap.Map()\nm.set_center(-103.19, 40.14, 9)\nm.add_layer(col, vis_params, 'Collection (for series inspection)', False)\n\n# Generate a best-pixel mosaic from the image collection.\nimg = col.qualityMosaic('quality')\nm.add_layer(img, vis_params, 'Best-pixel mosaic (by cloud score)')\n\n# To build the worst-pixel mosaic, according to cloud probability, use the\n# MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud\n# probability score).\nimg = col.qualityMosaic('MSK_CLDPRB')\nm.add_layer(img, vis_params, 'Worst-pixel mosaic (by cloud score)', False)\nm\n```"]]