Announcement: All noncommercial projects registered to use Earth Engine before
April 15, 2025 must
verify noncommercial eligibility to maintain access. If you have not verified by September 26, 2025, your access may be on hold.
ee.Reducer.robustLinearRegression
Stay organized with collections
Save and categorize content based on your preferences.
Creates a reducer that computes a robust least squares regression with numX independent variables and numY dependent variables, using iteratively reweighted least squares with the Talwar cost function. A point is considered an outlier if the RMS of residuals is greater than beta.
Each input tuple will have values for the independent variables followed by the dependent variables.
The first output is a coefficients array with dimensions (numX, numY); each column contains the coefficients for the corresponding dependent variable. The second is a vector of the root mean square of the residuals of each dependent variable. Both outputs are null if the system is underdetermined, e.g., the number of inputs is less than numX.
| Usage | Returns | ee.Reducer.robustLinearRegression(numX, numY, beta) | Reducer |
| Argument | Type | Details | numX | Integer | The number of input dimensions. |
numY | Integer, default: 1 | The number of output dimensions. |
beta | Float, default: null | Residual error outlier margin. If null, a default value will be computed. |
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-07-13 UTC.
[null,null,["Last updated 2024-07-13 UTC."],[],[]]